WINTER WORKSHOP DOCUMENTATION
DAY-1

PROBLEM STATEMENT: WIRELESS GESTURE RECOGNITION WITH OBSTACLE
AVOIDANCE
Basic Analogies of a Robot

1. Power Supply
2. Sensors

3. Microcontroller
4. Motor

Power Supply
We use DC supply for running the robot circuits. In case of an AC supply, rectifiers are used

to convert the input signal to DC. The different types of rectifiers are listed below:
a) Half-wave rectifiers: This rectifier converts only one half of the input AC supply, and

leaves the other half.

¥o
-
+

Vimax OR Imax

Msm?! —————
U\ /\ L ___[_\FC_W_%
|l. Vs VL RL
X 2% 3% 4% X X 3X 4%
\./LMM & "
Vemay |» = o= = =

Rectified output Voltage/Current
= Waveform

—i orvi—e

Input Voltage Waveform 1

Half-Wave Rectifier
www.CircuitsToday.com

b) Full-wave rectifiers: This rectifier converts both halves of the AC supply to DC supply.

+ +
Input &
i}
Waveform %
=
Time —

! Output Wawveform
D1

Grounded Center Tap results
in 1/2 secondary voltage
reaching the load

'12(]"!.1"_

c) Bridge rectifiers: It is similar to full wave rectifier.

RIVAY ||

**The RMS value of voltage is the value for DC supply after rectification.
**Adapters are used to power the robots. Batteries are not used as they are unreliable.

Types Of Electronic Circuits:
a) Analog Circuits.
b) Digital Circuits.

Analog Circuits are outdated. Digital circuits work on basic high and low values of signals.
Voltage limit for most of robot circuits is around 5V usually.

The adapters used for running the robots are of the range 9/12 V. To bring down the voltage
to usable form and limit, Integrated Circuits(ICs) are used. General ICs used are LM78XX

series(where XX represents the output voltage of the IC).

Heatsink

5to 15 Ohm
2 watts Resislor
—

| | iy [
9-12 volt
DC input
750 mA 1uF 1uF

The above is a simple diagram of LM7805.

To cell-phone
charger

Every IC runs on values and ranges specified by its Data Sheet.
The basic circuit of LM7805 is somewhat like

Input 1 3 Cutput
L7805

047F 2 |00gF

**Function of capacitors- As we know, capacitors allow the AC part of a signal through them.
We use the same property of capacitors here. The lesser ripples in the input voltage, the
better. The capacitors lessen the ripples in the input voltage to provide almost constant DC

supply to the robot circuit.

**Through-hole ICs are used in robotics. Tracer ICs are used in PCBs.

Microcontroller

Microcontroller is the brain of the robot. There is a difference between a microcontroller and
a microprocessor.

A microprocessor has arithmetic and logical units which function as per the input and give
the output based on logical analysis.

On the other hand, a microcontroller is a pre-programmed circuit that takes a range of input
and gives a range of output as per the instructions fed to it. Also, a microcontroller has its

own memory which is not there in a microprocessor.

An example of a microcontroller is ATmega16. It is a basic microcontroller.

There are three types of memories used in a microcontroller:
e Flash memory- Flash memory is an electronic non-volatile computer storage medium
that can be electrically erased and reprogrammed
e EEPROM- Electronically Erasable and programmable Read Only Memory is a type of
memory that retains its data when its power supply is switched off.
e SRAM- Static Random Access memory holds data as long as the power is switched

on. It loses everything once the power supply is gone.

DAY 2

BITWISE OPERATORS

1. AND
2. OR
3. NOT
4. XOR

5. << (LEFT SHIFT)
6. >>(RIGHT SHIFT)

THESE OPERATORS ARE VERY USEFUL IN BUILDING THE PROGRAMME .

OPERATIONS ON A BYTE

e SET

WHEN ‘SET’ IS OPERATED ON A BIT IT CHANGES ITS VALUE TO 1
THE SYNTAX IS A|=(1<<i);

e CLEAR

WHEN ‘CLEAR’ IS OPERATED ON A BIT IT CHANGES ITS VALUE TO 0
THE SYNTAX IS A&=~(1<<i);

e TOGGLE

WHEN TOGGLE IS OPERATED ON BIT IT CHANGES ITS VALUE TO 0 IF
INITIALLY ITIS 1, AND TO 1 IF INITIALLY ITIS 0.
THE SYNTAX IS Ar=(1<<i);

PINS AND PORTS
THERE ARE A TOTAL OF 40 PINS WHICH INCLUDE 4 PORTS AS SHOWN
BELOW

REGISTERS

e DDRX

THIS FUNCTION SPECIFIES THE INPUT AND OUTPUT PINS OF THE PORT
HERE X STANDS FOR PORT NAME

e.g DDRA=0b00000000; THIS MEANS ALL THE PINS ARE INPUT PINS
DDRA=0b11111111; THIS MEANS ALL THE PINS ARE OUTPUT
PINS

e PINX

IT IS USED TO SPECIFY THE STATE OF THE PORT

e PORTX

IT ASSIGNS OUTPUT VALUE TO THE OUTPUT PINS

DELAY COMMAND

IT APPEARS LIKE _delay_ms(500);
THIS COMMAND CREATES TIME LAG . IT CAN USED BETWEEN TWO
COMMANDS IN ORDER TO CREATE TIME LAG BETWEEN TWO COMMANDS .

PORTA=0b11111111;
_delay_ms(500);
PORTA=0b00000000:

HEADER FILES

#define F_CPU 16000000UL
#include<avr/io.h>
#include<util/delay.h>

WE USE THESE KNOWLEDGE TO MAKE A PROGRAMME THAT WOULD LIT
UP SOME LED PATTERNS .

ADC

An analog-to-digital converter (ADC)is a device that converts a continuous
physical quantity (usually voltage) to a digital number that represents the
quantity's amplitude.

ADC value is the corresponding digital value of a given analog input .

REGISTERS

1. ADCSRA

ADEN: ADC Enable bit . When this bit is set to 1 ADC turns on.

ADSC: ADC Start Conversion . When this bit is set to 1 it begins ADC
conversion, and the value is set back to 0 when the conversion is complete .

ADPS: ADC Prescaler . These bits are set the ADC clock frequency.

ADC clock frequency = XTAL frequency / Prescaler

Register ADCSRA

Status Register A - Bl .
ADCSRA [CAGENTTADSC | ADATE | ADIF | AW | AbPsa | ADPS1 | ADPSo | ADCSRA
Pl ot Ve . mW PW AW MW W AW m
Iritenl 'V il o ¢ 0 @] o a @

+ Bits 2:0 - ADPS2:0: ADC Prescaler Select Bits

+ Bit 7T - ADEN: ADC Enable
ADPs2 ADPSA ADPSD [ivsion Factar
0 o 0 2
« Bit6 - ADSC: ADC Start Conversion D o , 2
o 1 0 | 4
+» Bit5- ADATE: ADC Aulo Trigger Enable 0 i i B
1 a 4] 16
+ Bit4 - ADIF: ADC Interrupt Flag a ! ®
i 0 i
1 1 1 12

+ Bit 3 - ADIE: ADC Interrupt Enable
f ADC=f _Osc/Div_Factor
= 16 MHz / 128 = 125kHz

2. ADMUX

REFS1 and REFSO0 bits determine the source of reference voltage whether it is
internal or the external voltage source connected to AREF pin.

MUX bits are used to select between the channels which will provide data to ADC for

Bit7 Bit 6 Bit§
REFS1 ~ REFSO ADLAR
0 0 0

\Ir”
Refrence Sel. Bits
00-> AREF, Internal Vyer OFF

01-» VHEF is E‘qu3| (4] UAWE

10-> Reserved
11-> Vage = 256V (Internal Ref V)

conversion.
Bit4 Bit 3 Bit 2 Biti
MUX4d MUX3 MUX2Z MUX1
0 0 0 0

-

Bit0
MUX0
0

J/

""-\//"

ADC Channel Sel. Bits
0000-> ADCO 0100-> ADCA
0001 -> ADCL 0101 -> ADCS
0010-> ADCZ2 0110-> ADCE
0011->ADC3 0111-» ADC7

ADLAR bit when set to 1 gives the left adjusted result in data registers ADCH and
ADCL. These help to get the required precision in the output.

ADLAR

The ADC Data
Register — ADCL and
ADCH

ADLAR =0

ADLAR =1

Bit

ReadWrite

Initial Value

Bit

ReadWiite

Initial Value

MOTOR DRIVER
L293D

15 14 13 12 1" 10 o 8

- - - - - - ADCS ADCSE
ADCT ADCE ADCS ADC4 ADC3 ADC2 ADCH ADCO

T [-] & 3 2 1 0

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

15 14 13 12 1 10 9 8
ADC9 ADCS ADCT ADCE ADCS ADC4 ADC3 ADC2
ADC1 ADCO - - - - - -

7 [5 4 3 2 1 0

R R R R R R R R

R R R R R R R R

0 1] 0] 0 0 1] 0

0 0 0 0 0 0 0 0

ADCH
ADCL

ADCH
ADCL

(

J B
ENABLE-1 1 16 vss

INPUT1 2 15 INPUT4
.
2
OUTPUT1 3 2 14 OuTPUT4
B
=]
o
p—— G N D 4 Q s 13 G N —
2
[=]
e =
L GNI 5 -\ =2 12 GND
Lo | =
——ouTPuT2 6 '4 = 11 ouTPUT3 —
INPUT2 7 10 INPUT3
VS 8 9 ENABLE2
1 +
| = This GND Must also be connected to MCUs GND

Motor Supply
Equal to Rating of

Motors Used

o

Motor Controller Using L293D

ENABLE 1 AND ENABLE 2 ARE USED TO ON OR OFF THE LEFT AND LIGHT CIRCUIT .
ACCORDING THE ENABLE VALUE OUTPUT FOLLOW ENABLE CURVE.

ACCELEROMETER

IT'S GIVE ANALOG OUTPUT VOLTAGE ACCORDING TO ITS ANGLE WITH

HORIZONTAL .

IT WORKS ON GRAVITATIONAL FORCE IN 3 DIMENSIONAL AXIS.

wer Arduino
50

LET.)

— 51 ADXL335

[TEETPTIRPPTITRERRTI

Day 3

3 Timers are there ,2 8 bit timer TCCRO & TCCR2,1 16bit Timer TCCR1.

TCCRO =>

Bit # F B 5 4 3 2 1 0
Bit Name | FOCO0 | WGMO00O | COMO1 | COMO0O | WGMO01 | CS02 CS01 cS00
ReadWrite W RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
FOCOD Force Output Compare: FOCO bit is only active when the WGMO00: 1
bits specifies a non-PWM mode. This bit is always read as zero. When
this bit is set, and a compare with
WGM0O0 WGMOD1 Timer Mode 0 Selector Bits (Four modes available)
0 0 Mormal Mode
0 1 CTC (Clear Timer on Compare Match) Mode
1 0 PWM, Phase Correct Mode
1 1 Fast PWM
COMO01: COMOOD Compare Output Mode: These bits control waveform generation, if
CTC mode is selected through WGM0O0-01 bits then:
0 0 Mormal mode aperation
0 1 Toggle OCO (PB3, Pin 4) on compare match
1 0 Clear OCO on compare match
1 1 Set OCO on compare match
CS02:00 D2 D1 DO Timer 0 Clock Source Selector
0 0 0 Mo clock source (Timer/Counter stopped)
0O 0 1 clk (No Prescaling)
0 1 0 clk /8
0o 1 1 clk / 64
1 0 0 clk / 256
1 0 1 clk / 1024
1 1 0 External clock on TO (PB0) pin. Clock on falling edge
1 1 1 External clock on TO (PBO0) pin. Clock on rising edge
TCCRO (Timer / Counter Control Register)
Bit # Fi 6 5 4 3 2 1 0
Bit Name | OCF2 TOV2 ICF1 OCF1A | OCF1B | TOW1 OCFD TOVO
ReadWrite w RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

TCCR2 =>

Timer/Counter Control

Register - TCCR2 Bit 7 § 5 4 1 2 1 0
| roca | weao | comzt | cON2o | WGM2f | csz | csM | csm | TCCR2

ReadWite W RW RW RW RW RW RW RW
0 1 1 0 1 0 0

44, ompaé

= (x69

Table 42. Waveform Generation Mode Bit Descripij

1
b tput Mode, Fast PWM Mode'"

WGM21 | WGM20 | Timet/Counter Motle Update of | TOV2 Flag —
Mode | (CTC2) | (PWM2) | of Operation’ TOP | OCR2 Set CUM}& 961\420 Description
0 0 0 | Normal / O0xFF | Immediate | MAX 9/ \/ 0 Normal port operation, QC2 disconnected.
1 0 1 Wha&e Correct | OxFF | TOP BOTTOM Yo /\1 Reserved
2 1 ,9// /6TC OCR? | Immediate | MAX / 1 0 Clear OC2 on Compara Match, set OC2 at BOTTOM,

i f (non-inverting mode)
3 | 17| FastPm o | Boron [uax /|
1 1 Set OC2 on Compare Mafch, clear OC2 at BOTTOM,
(invarting mode)

Table 46. Glock Selegt Bit Description

cs22 /| cs21 /| cs20 /] Descripion
0 / 0 / 0 / No clock source (Timer/Counter stopped).
0 O' 1 ' Clkpyg/(No prescaling)
0 1 0 | clkppg/8 (From prescaler)
0 1 1 tlkrpg/32 (From prescaler)
1 0 0 | clkppg/64 (From prescaler)
1 0 1 tlkrpg/128 (From prescaler)
1 1 0 tlkyp5/256 (From prescaler)
1 1 1 tlkypg/1024 (From prescaler)

TCCR1 =>

TCCR1A - Timer/Counter1 Control Reglster A

B H B 5 4 3 2 I 0

i R o B o e B o O R 8
RoadWrte R AW RW] R R RW AW

Iniial Vakuo 0 0 0 0 0 0 0 0

TCCR1B - Timer/Counter1 Control Reglster B
B 7 ‘ 5 4 3 2 | 0

CTTI L0 C cm [Reel

RoadWnto AW aw " AW RW AW AW h

Infal Valuo 0 0 0 0 0 0 0 0
COM1A1/COM1B1 | COM1A0/COM1BO | Description

0 0 Normal port operation, OC1A/OC1B
disconnected.

0 1 Toggle OC1A/OC1B on compare mateh

1 0 Clear OC1A/OC1B on compare match (Set
output to low level)

1 1 Set OC1A/OC1B on compare match (Set
output to high level)

WGM12 | WGM11 | WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM{3 | (CTC1) | (PWNH{) | (PWNHO) | Operation TOP | OCRixat | Seton
0 0 0 0 0 Normal OxFFFF | Immediate | MAX
] 0 0 0 { | PWM Phase Comect, 85t | OXOOFF | TOP | BOTTOM
2 | 0 0 1 0 | PWM,Phase Corect 00t | OKOIFF | TOP | BOTTOM
300 0 1 { | PWM Phase Comect, 106t | OXO3FF | TOP | BOTTOM
L0 1 0 0 |cTe OCRIA | Immediate | MAX
500 1 0 1| FastPWM, &b OOFF | BOTTOM | TOP
6 | 0 1 1 0| Fast PWM, 0:0t OOIFF | BOTTOM | TOP
7 0 1 1 1| FastPWM, 10 OIFF | BOTTOM | TOP
g 1 0 0 0 Emfhase‘"’“d FIeQUenY | 1ors | BOTTOM | BOTTOM
9 | 0 0 | E‘;‘;E"; Ctphasea”d FEQUENSy | cRiA | BOTTOM | BOTTOM
0| 1 0 1 0 | PWM, Phase Corect CRt |TOP | BOTTOM
T 0 1 1| PWM, Phase Cored OCRIA |TOP | BOTTOM
0| 1 1 0 0 |cTe CR1 | Inmediate | MAX
13 1 1 0 1 (Reserved) - - -
“| o1 1 1 0| FastPWM Rt |BOTTOM | TOP
5| 1 1 1 | FastPWM OCRIA | BOTTOM | TOP

Types of PWM =>
1)Normal PWM-

0 |V Ve
sy Pariod
I_I H |—| OCOPIN
oV - -
Y
Average vV
out =125V
oV (25% of 5V)
2)Fast PWM-
]]
Compare — - _,.-:’;"_ e e e
i i _.-"'F i i
.-'--] 1 _.--.-] []
Bottorm 7 i - . v

3)Phase Correct PWM-

-__. -
Compare — — - — ='— - — - i St
5 e i = -_.-

Phase Correct PW M

4)Clear Time On Compare Match Mode(CTC)-

Figure 16-6. CTC Mode, Timing Diagram

(Gna intarmupd Flag Set
1 O 8§ O O O O O O B S EI'H:FH |I'¢i||'|'|jr'lr=|.al;| E-FI
| | | 1 {Inigrmagt an TOP)
| 1 \
RaT
|
TCNTA |
OCnA .
(COMnA1 D =1)
(Toggle) ——— THN——
L- = e
Porod | : : E“*‘"I P

Day 4

External Interrupt :-

Hi today we read about the INTERRUPT, in our practical life this word
causes an annoying situation. Nobody wanted to get interrupted, but in
controllers this offers a great deal of flexibility. One of the most useful
principles of modern embedded processors is interrupt. Interrupts does
exactly what it means. Normally, you would expect a program to keep on
executing sequentially in the way you have defined. But when an
interrupt occurs, the normal flow of instruction is suspended by the
microcontroller and the interrupt service routine (ISR) of the according
event is executed. So basically when ever interrupt event occur, we stop

current task, handle the event then resume back where we left off.
- ™

{®CHJ/TO) PBO 1 | T PAD (ADCO)
(e]2 38L] PANADCT)
(INTZIAIND) P82 [3 | 38 PAZIADCS)
(OCO/AINT) PB3 [| 4 37| PASADCS)

(55) PB4 5 3% PadADCE)
(MO0} PBS i a5 PASIALDICS)
(MISC) PES T (e 341 PABADCT)

(ScKyPBY (|8 T 33[] PAT(ADCT)
RESET :9_'] Y 32| AREF
wCC] 10 % 311 GND
GMD 11 E 30| AVCC
XTAL2 [] 12 = 29[pe7(TOSC)
xTaLi [13 <L 28{7] Pcs (Tosc1)
(RXD)PDO [] 14 577 PCS (TO)
(TXD) FD 15 26 PCa (TDO)

. {INTO) PD2 | 1E| 25 PC3 (TMS)
T(NTPD3 [| 17 24|] PC2 (TCK)
(OC1B)PD4 || 18 23[7] PC1(SDA)
(OG14) PDS 18 22 PCO (SCL)

(ICE1) PDE | 20 21 PCT (0C2)
., v

What exactly happens when interrupt happens?

Following is what happens when an interrupt occurs:

1. Controller completes the instruction which is being executed.

2. Control gets transfers to Interrupt Service Routine (ISR). (Each
interrupt have an associated ISR which is a piece of code which tells the
microcontroller what to do when an interrupt has occurred.)

3. Execution of ISR is performed by loading the beginning address of
the corresponding ISR into program counter.
4. Execution of ISR continues until the return from the interrupt
instruction (RETI) is encountered.
5. When ISR is complete, the Controller resumes processing where it
left off before the interrupt occurred.
There are two mainly two sources of interrupts available, but 8-bit AVR
lacks software interrupts so we fall back to Hardware interrupts.
Hardware interrupt which occurs in response to a timer reaching to
predefined value or a particular pin changing its state.
To check number of interrupts available for a particular AVR
microcontroller, please go through datasheets. You will find a chapter
called interrupts, there you will find a reset and interrupt vector table.
This table contains full list of possible available interrupts. This table
contains Vector table address, source name and interrupts definition.
The following example will show how to use external interrupts (as
opposed to timer interrupts) on an Atmel AVR using software written in
GCC. The first thing to do is to see what interrupts are available for your
model of processor. For this example | will be using the ATmega16.
You can use the data sheet available from Atmel to find the interrupts.
The ATMEGA16 has 3 external interrupt lines: INTO, INT1 and INT2, on
pins PD2, PD3 and PB2.
Interrupts on INTO and INT1 can be level-triggered (meaning that the
interrupt is triggered when the signal goes low i.e. OV for some time or
edge-triggered(meaning that the interrupt is triggered when the signal
changes from high to low or low to high)
INT2 can only be used as an edge-triggered interrupt.

How to set interrupt control register?

MCUCR - MCU Control Register:

The MCU Control Register contains control bits for interrupt sense
control and general MCU functions. The Bit0, Bit1, Bit2 and Bit3 of
MCUCR register determines the nature of signal at which the interrupt O
(INTO) and interrupt 1 (INT1) should occur.

-

Bit Number 7 & 5 4 3 2 1 0

M c U C R SM2 SE SM1 SMO ISC11 ISC10 ISCO1 ISCO0
Read/\Write R RW R R/W RW RMW RAW RW
Initial Value 0 0 0 0 0 a 0 0

L

MCUCR register Bits 3,2 are used for sensing an external interrupt on
line INT1. Similarly Bits 1,0 are used for sensing an external interrupt on
line INTO. Following table shows different patterns to set the bits.
Interrupt 1 Sense Control

ISC11 ISC10 Description
0 0 The low level of INT1 generates an interrupt request.
0 1 Any logical change on INT1 generates an interrupt request.
1 0 The falling edge of INT1 generates an interrupt request.
1 1 The rising edge of INT1 generates an interrupt request.

MCUCSR - MCU Control & Status Register:

The MCU Control and Status Register provide information on which
reset source caused an MCU Reset. The Bit6 of MCUCSR register
determines the nature of signal at which the external interrupt 2 (INT2)
should occur. INT2 is edge triggered only, it cannot be used for level
triggering like INTO and INT1.

.
Bit Number 7 6 5 4 3 2 1 0
MCUSCR | JTD IsC2 — JTRF WDRF BORF EXTRF | PORF
Read/Write RW RW R RW RW RAW R
Initial Value 0 0 0 See Bit Description

\

INT2 = 0 Falling Edge
INT2 = 1 Rising Edge
To avoid occurrence of interrupt while changing the ISC2 bit, please
follow following procedure:
° Disable INT2 by clearing its interrupt in GICR register.
e The ISC2 bit can be changed

e The INT2 interrupt Flag should be cleared by writing one to flag bit
(INTF2) in the GIFR register before the interrupt is re-enabled.

GICR - General Interrupt Control Register:

The General Interrupt Control Register controls the placement of the
Interrupt Vector table.

When bit value of Bit5, Bit6 and Bit7 are set to one, enables INTO, INT1
and INTZ2 interrupts. To disable or mask them just set it to zero.

-

Bit Number rd 6 5 4 3 2 1 0
GICR INT1 INTO INT2 - — —_ IVSEL | IVCE
Read/Write R/W R/W RIW R R R RIW RW
Initial Value 0 0 0 0 0 0 0 0

GIFR - General Interrupt Flag Register:

Interrupt requests are managed by Bit 7, 6, 5. The flag is set for each of
these when the respective line is triggered, and cleared when the
corresponding interrupt service routine is executed. Alternatively, we can
clear the flags manually by writing it to 1.

”
Bit Number T 6 5 4 3 2 1 0
G | F R INTF1 INTFO INTF2 —_— —_— -_— -_— —
Read/\Write R/W RMW = R R R R
Initial Value 0 0 0 0 0 0 0 0

Programming Steps:

For programming an interrupt, the following steps must be followed:
1. Clear Global Interrupt enable bit in SREG register.

2. Initialize the interrupt by appropriately configuring the MCUCR,
MCUCSR and GICR registers.

3. Set Global Interrupt Enable bit in SREG register.

4. Define the appropriate Interrupt service routine (ISR) for the
interrupt.

Timer Interrupt:-

Using The 8 BIT Timer (TIMERO)

The ATmega16 has three different timers of which the simplest is TIMERO. Its resolution is 8 BIT

i.e. it can count from 0 to 255.

TIMERO Registers

As you may be knowing from the article “Internal Peripherals of AVRs” every peripheral is
connected with CPU from a set of registers used to communicate with it. The registers of

TIMERS are given below.

TCCRO — Timer Counter Control Register. This will be used to configure the timer.

FoC0 WiEMOOD

comol | comoo | wemor | csoz | csm | csoo

(g1

As we can see there are 8 Bits in this register each used for certain purpose.We will only focus

on the last three bits CS02 CS01 CS00 They are the CLOCK SELECT bits. They are used to set

up the Prescaler for timer.

C502 Cs01 Cz00 Drescription

0 0 0 Timer stoped

o o 1 FCPL

o 1 o FCPLI/S

0 1 1 FCPLI/E4

1 0 0 FCPL/256

1 0 1 FCPL/1024

1 1 0 External Clock Source on PIN
TO.Clock on falling edge

1 1 1 External Clock Source on PIN
TO.Clock on rising edge

TCNTO — Timer Counter O

Timer Interrupt Mask Register TIMSK

CCIED TOIE

This register is used to activate/deactivate interrupts related with timers. This register controls the

interrupts of all the three timers. The last two bits (BIT 1 and BIT 0) Controls the interrupts of

TIMERO. TIMERO has two interrupts .We will increment a variable “count” at every

interrupt(OVERFLOW) if count reaches 61 we will toggle PORTCO which is connected to LED

and reset “count= 0”. Clock input of TIMERO = 16MHz/1024 = 15625 Hz Frequency of Overflow =

15625 /256 = 61.0352 Hz if we increment a variable “count” every Overflow when “count reach

61” approx one second has elapse.

Setting Up the TIMERO

// Prescaler = FCPU/1024

TCCRO|=(1<<CS02) | (1<<CS00) ;

//Enable Overflow Interrupt Enable

TIMSK|=(1<<TOIEO) ;

//Initialize Counter

TCNTO0=0;

Now the timer is set and firing Overflow interrupts at 61.0352 Hz

The ISR

ISR (TIMERO OVF vect)

{
//This is the interrupt service routine for TIMERO OVERFLOW Interrupt.

//CPU automatically call this when TIMERO overflows.
//Increment our variable

count++;

if (count==61)

{

PORTC=~PORTC; //Invert the Value of PORTC
count=0;

}

Timer Interrupt 1

TCCR1B Register
The Timer/Counter1 Control Register B- TCCR1B Register is as follows.

Bit 7 6 5 4 3 2 1 0

I ICNCA1 ICES1 - WGM13 | WGM12 rC512 | Cs11 CS10 I TCCR1B
Read/Write RAW RW R RW RW RW R/W RW
Initial Value 0 0 0 0 0 0 0 0

TCCR1B Register

Right now, only the highlighted bits concern us. The bit 2:0 — CS12:10 are the Clock

Select Bits of TIMER1. Their selection is as follows.

CS12 CSs11 CS10 Description

1] 0 0 Mo clock source (Timer/Counter stopped).

0 0 1 clkyof1 (No prescaling)

0 1 0 clk,o/8 (From prescaler)

0 1 1 clk,~/64 {From prescaler)

1 0 0 clk, /256 (From prescaler)

1 0 1 clkyn/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.
1 1 1 External clock source on T1 pin. Clock on rising edge.

TCNT1 Registers:-

The Timer/Counter1 — TCNT1 Register is as follows. It is 16 bits wide since the
TIMER1 is a 16-bit register. TCNT1H represents the HIGH byte whereasTCNT1L

represents the LOW byte. The timer/counter value is stored in these bytes.

Bit 7 6 5 4 3 2 1 0
TCNT1[15:8] TCNT1H
TCNTA1[7:0] TCNTIL
Read/\Write R/W RW RAW RW RAW R/W RW R/W
Initial Value 0 0 0 0 0 0 0 0
TIMSK Register

The Timer/Counter Interrupt Mask Register — TIMSK Register is as follows.

Bit 7 6 5 Pl 3 2 1 0

OCIE2 TOIE2 TICIE1 OCIE1A | OCIE1B TOIE1 OCIE0 TOIED TIMSK
Read/Write R/W RMW RW RW RW RW RW RW
Initial Value 0 0 1] 0 0 0 1] 0

As we have discussed earlier, this is a common register for all the timers. The bits
associated with other timers are greyed out. Bits 5:2 correspond to TIMER1. Right
now, we are interested in the yellow bit only. Other bits are related to CTC mode.

Bit 2 — TOIE1 — Timer/Counter1 Overflow Interrupt Enable bit enables the overflow
interrupt of TIMER1. We enable the overflow interrupt as we are making the timer

overflow 61 times (refer to the methodology section above).

TIFR Register
The Timer/Counter Interrupt Flag Register — TIFR is as follows.

Bit 7 6 5 - 3 2 1 0

OCF2 TOV2 ICF1 OCF1A | OCF1B | TOV1 I OCFO0 | TOVD I TIFR
Read/Write RW R/W RW RW RW RW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Once again, just like TIMSK, TIFR is also a register common to all the timers. The
greyed out bits correspond to different timers. Only Bits 5:2 are related to TIMER1.
Of these, we are interested in Bit 2 — TOV1 — Timer/Counter1 Overflow Flag. This bit
is set to ‘1’ whenever the timer overflows. It is cleared (to zero) automatically as soon
as the corresponding Interrupt Service Routine (ISR) is executed. Alternatively, if

there is no ISR to execute, we can clear it by writing ‘1’ to it.

Timer Interrupt 2

TCCR2 Register
The Timer/Counter Control Register — TCCR2 is as follows:

Bit 7 6 5 4 3 2 1 0
| Focz | wemzo | com21 | com2o0 | wGmz21 | cs22 | cCs21 €S20 | TCCR2

Read/Write w RIW RIW RIW RIW RIW RW RIW

Initial Value 0 0 0 0 0 0 0 0

We are only concerned with Bits2:0 — CS22:20 — Clock Select Bits. Unlike other timers,
TIMER2 offers us with a wide range of prescalers to choose from. In TIMERO/1 the
prescalers available are 8, 64, 256 and 1024, whereas in TIMER2, we have 8, 32, 64, 128,

256 and 1024!

Cs522 CsS21 Ccs520 Description

0] 0 No clock source (Timer/Counter stopped).
0 0 1 clkyz5/(No prescaling)

0 1 0 clk+25/8 (From prescaler)

0 1 1 clky25/32 (From prescaler)

1 0 0 Clk;5/64 (From prescaler)

1 1] 1 Clkys5/128 (From prescaler)

i 1 1] clk;5./256 (From prescaler)

1 1 1 clks,5/1024 (From prescaler)

Since we are choosing 256 as the prescaler, we choose the 7th option (110).

TCNT2 Register
In the Timer/Counter Register — TCNT2, the value of he timer is stored. Since TIMERZ2 is an

8-bit timer, this register is 8 bits wide.

Bit 7 6 5 4 3 2 1 0
| TCNT2[7:0] | Tonm2

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

TIMSK Register
The Timer/Counter Interrupt Mask — TIMSK Register is as follows. It is a register

common to all the timers.

Bit 7 6 5 4 3 2 1 0

I OCIE2 TOIE2 TICIE1 OCIE1A | OCIE1B TOIE1 OCIED TOIED I TIMSK
Read/Write RW R RW RW RW RwW R/W RW
Initial Value 0 0 0 0 0 0 0 0

Here we are concerned with the 6th bit — TOIE2 — Timer/Counter2 Overflow Interrupt
Enable. We set this to ‘1’ in order to enable overflow interrupts.

TIFR Register
The Timer/Counter Interrupt Flag Register — TIFR is as follows. It is a register

common to all the timers.

Bit 7 6 5 - 3 2 1 0

| OCF2 TOV2 ICF1 OCF1A | OCF1B TOV1 OCFO0 Tovo I TIFR
Read/Write RMW R/W R/W RW R/W R/W R/W RW
Initial Value 0 0 0 0 0 0 0 0

Here we are concerned with the 6th bit — TOV2 — Timer/Counter2 Overflow Flag.
This bit is set (one) whenever the timer overflows. It is cleared automatically
whenever the corresponding Interrupt Service Routine (ISR) is executed.

Alternatively, we can clear it by writing ‘1’ to it.

The USART of the AVR

Here we are with the AVR communication protocols series, starting with the most

basic ones, UART and USART!

Contents

e UART and USART

e USART Layout — How to set it up?
e USART Pin Configuration

e Modes of Operation

e Baud Rate Generation

e Frame Formats

o Order of bits
o Number of Data bits
o Number of Stop bits
o Parity bits
m Even/Odd Parity
m Why use the Parity bit?
e Register Description

o UDR, UCSRA, UCSRB, UCSRC, UBRR

UART and USART

UART stands for Universal Asynchronous Receiver/Transmitter. From the name
itself, it is clear that it is asynchronous i.e. the data bits are not synchronized with the

clock pulses.
USART stands for Universal Synchronous AsynchronousReceiver/Transmitter. This

is of the synchronous type, i.e. the data bits are synchronized with the clock pulses.

Some of the main features of the AVR USART are:

e Full Duplex Operation (Independent Serial Receive and Transmit Registers)
e Asynchronous or Synchronous Operation

e Master or Slave Clocked Synchronous Operation

e High Resolution Baud Rate Generator

e Supports Serial Frames with 5, 6, 7, 8, or 9 Data bits and 1 or 2 Stop Bits

USART Layout — How to set it up?

AVR USART is fully compatible with the AVR UART in terms of register bit locations,
baud rate generation, transmitter/receiver operations and buffer functionality. So let

us now have a quick look at how to set up USART in general.

The first step is to set the baud rate in both, the master and the slave. The baud rate
has to be the same for both — master and slave.
1. Set the number of data bits, which needs to be sent.
2. Get the buffer ready! In case of transmission (from AVR to some other
device), load it up with the data to be sent, whereas in case of reception, save
the previous data so that the new received data can be overwritten onto it.

3. Then enable the transmitter/receiver according to the desired usage.

One thing to be noted is that in UART, there is no master or slave since master is
defined by the MicroController, which is responsible for clock pulse generation.
Hence Master and Slave terms occur only in the case of USART.

Master uC is the one which is responsible for Clock pulse generation on the Bus.

USART Pin Configuration

Now lets have a look at the hardware pins related to USART. The USART of the
AVR occupies three hardware pins pins:

1. RxD: USART Receiver Pin (Pin 14)

2. TxD: USART Transmit Pin (Pin 15)

3. XCK: USART Clock Pin (Pin 1)
Modes of Operation
The USART of the AVR can be operated in three modes, namely-

1. Asynchronous Normal Mode

2. Asynchronous Double Speed Mode

3. Synchronous Mode
Asynchronous Normal Mode
In this mode of communication, the data is transmitted/received asynchronously, i.e.
we do not need (and use) the clock pulses, as well as the XCK pin. The data is
transferred at the BAUD rate we set in the UBBR register. This is similar to the
UART operation.
Asynchronous Double Speed Mode
This is higher speed mode for asynchronous communication. In this mode also we
set the baud rates and other initializations similar to Normal Mode. The difference is

that data is transferred at double the baud we set in the UBBR Register.

Setting the U2X bit in UCSRA register can double the transfer rate. Setting this bit
has effect only for the asynchronous operation. Set this bit to zero when using
synchronous operation. Setting this bit will reduce the divisor of the baud rate divider
from 16 to 8, effectively doubling the transfer rate for asynchronous communication.
Note however that the Receiver will in this case only use half the number of samples
(reduced from 16 to 8) for data sampling and clock recovery, and therefore a more
accurate baud rate setting and system clock are required when this mode is used.
For the Transmitter, there are no downsides.

Synchronous Mode

This is the USART operation of AVR. When Synchronous Mode is used (UMSEL = 1
in UCSRC register), the XCK pin will be used as either clock input (Slave) or clock
output (Master).

Baud Rate Generation

The baud rate of UART/USART is set using the 16-bit wide UBRR register. The

register is as follows:

Bit 15 14 13 12 11 10] 8
URSEL | - | - | = UBRR[11:8] | usrrH
UBRR[7:0] | uerrL
7 6 5 4 3 2 1 0
Read/Write RAW R R R RAW RAW RAW RIW
RIW RIW RIW RIW RAW RIW RIW RIW
Initial Value 0 0 0 0 0 i} o 0
0 0 0 0 0 0 0 0

Since AVR is an 8-bit microcontroller, every register should have a size of 8 bits.
Hence, in this case, the 16-bit UBRR register is comprised of two 8-bit registers —
UBRRH (high) and UBRRL (low). This is similar to the 16-bit ADC register (ADCH
and ADCL, remember?). Since there can be only specific baud rate values, there

can be specific values for UBRR, which when converted to binary will not exceed 12

bits. Hence there are only 12 bits reserved for UBRR[11:0]. We will learn how to
calculate the value of UBRR in a short while in this post.

The USART Baud Rate Register (UBRR) and the down-counter connected to it
functions as a programmable prescaler or baud rate generator. The down-counter,
running at system clock (FOSC), is loaded with the UBRR value each time the
counter has counted down to zero or when the UBRRL Register is written. A clock is
generated each time the counter reaches zero.

This clock is the baud rate generator clock output (= FOSC/ (UBRR+1)). The
transmitter divides the baud rate generator clock output by 2, 8, or 16 depending on
mode. The baud rate generator output is used directly by the receiver’s clock and
data recovery units.

Below are the equations for calculating baud rate and UBRR value:

Equation for Calculating ' Equation for Calculating
Operating Mode Baud Rate'" | UBRR Value
Asynchronous Normal mode (LIZX Lianic ' ; -
=0 BAUD =2 ————— I'BRR = ——— -

) 16 I'BRR + 1) 16BA LD
Asynchronous Double Speed P ' e
Made (UZX = 1 BAUD = sk UBRR = —=93C_ _4

i BUBRRST) | 83.4UD
Synchronous Master Modsa ST F T P
T 2IUBRR +1) T 2BAUD

1. BAUD = Baud Rate in Bits/Second (bps) (Always remember, Bps =
Bytes/Second, whereas bps = Bits/Second)

2. FOSC = System Clock Frequency (1MHz) (or as per use in case of external
oscillator)

3. UBRR = Contents of UBRRL and UBRRH registers

Frame Formats

A frame refers to the entire data packet which is being sent/received during a
communication. Depending upon the communication protocol, the formats of the
frame might vary. For example, TCP/IP has a particular frame format, whereas UDP
has another frame format. Similarly in our case, RS232 has a typical frame format as
well. This is nothing but the selection of a frame format!

A typical frame for USART/RS232 is usually 10 bits long: 1 start bit, 8 data bits, and

a stop bit. However a vast number of configurations are available... 30 to be precise!

-* LIART FRAME »

START STOR
—F AT "‘ D‘ATAEITS BIT ,'_

Order of Bits
1. Start bit (Always low)

2. Data bits (LSB to MSB) (5-9 bits)

3. Parity bit (optional) (Can be odd or even)

4. Stop bit (1 or 2) (Always high)
A frame starts with the start bit followed by the least significant data bit. Then the
next data bits, up to a total of nine, are succeeding, ending with the most significant
bit. If enabled, the parity bit is inserted after the data bits, before the stop bits. When
a complete frame is transmitted, a new frame can directly follow it, or the
communication line can be set to an idle (high) state. Here is the frame format as

mentioned in the AVR datasheet-

* FRAME ']'

.
v) T ‘
(IDLE) \St/ 0 j(1)(2)(\ 3 :(4 X[ﬁlx [E]XWXMXT/SM [Sp2]| (St/IDLE)

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transters on the communication line (RxD or TxD). An IDLE line must
be high.

Note: The previous image (not the above one, the one before that) of Frame Format

has a flaw in it! If you can find it.

Setting the Number of DATA Bits

The data size used by the USART is set by the UCSZ2:0, bits in UCSRC Register.
The Receiver and Transmitter use the same setting.

Note: Changing the settings of any of these bits (on the fly) will corrupt all ongoing
communication for both the Receiver and Transmitter. Make sure that you configure

the same settings for both transmitter and receiver.

ucsz2 ucszi ucszo Character Size
0 0 0 5-hit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

Data Bit Settings (Click to Enlarge)

Setting Number of STOP Bits

This bit selects the number of stop bits to be inserted by the transmitter. The

Receiver ignores this setting. The USBS bit is available in the UCSRC Register.

USBS Stop Bit(s)
0 1-bit
1 2-bit

Stop Bit Settings (Click to Enlarge)
Parity Bits

Parity bits always seem to be a confusing part. Parity bits are the simplest methods
of error detection. Parity is simply the number of ‘1’ appearing in the binary form of a
number. For example, ‘55’ in decimal is 0b00110111, so the parity is 5, which is odd.
Even and Odd Parity

In the above example, we saw that the number has an odd parity. In case of even
parity, the parity bit is set to 1, if the number of ones in a given set of bits (not
including the parity bit) is odd, making the number of ones in the entire set of bits
(including the parity bit) even. If the number of ones in a given set of bits is already
even, it is set to a 0. When using odd parity, the parity bit is set to 1 if the number of
ones in a given set of bits (not including the parity bit) is even, making the number of
ones in the entire set of bits (including the parity bit) odd. When the number of set
bits is odd, then the odd parity bit is set to 0.

Still confused? Simply remember — even parity results in even number of 1s,
whereas odd parity results in odd number of 1s. Lets take another example. 0d167 =
0b10100111. This has five 1s in it. So in case of even parity, we add another 1 to it
to make the count rise to six (which is even). In case of odd parity, we simply add a 0
which will stall the count to five (which is odd). This extra bit added is called the

parity bit! Check out the following example as well (taken from Wikipedia):

7 bits of data (count of 1 bits) 8 bits including parity

even odd
0000000 0 00000000 00000001
1010001 3 10100011 10100010
1101001 4 11010010 11010011
1111111 7 11111111 11111110

But why use the Parity Bit?

Parity bit is used to detect errors. Lets say we are transmitting 0d167, i.e.
0b10100111. Assuming an even parity bit is added to it, the data being sent
becomes 0b101001111 (pink bit is the parity bit). This set of data (9 bits) is being
sent wirelessly. Lets assume in the course of transmission, the data gets corrupted,
and one of the bits is changed. Ultimately, say, the receiver receives 0b100001111.
The blue bit is the error bit and the pink bit is the parity bit. We know that the data is
sent according to even parity. Counting the number of 1s in the received data, we
get four (excluding even parity bit) and five (including even parity bit). Now doesn't it
sound amusing? There should be even number of 1s including the parity bit, right?
This makes the receiver realize that the data is corrupted and will eventually discard
the data and wait/request for a new frame to be sent.

Limitations of using single parity bit is that it can detect only single bit errors. If two
bits are changed simultaneously, it fails.

The Parity Generator calculates the parity bit for the serial frame data. When parity
bit is enabled (UPM1 = 1), the Transmitter control logic inserts the parity bit between
the last data bit and the first stop bit of the frame that is sent. The parity setting bits

are available in the UPM1:0 bits in the UCSRC Register.

UPM1 UPMO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 | 1 - Enat;Ied, Odd F'ar?’ry

Although most of the times, we do not require parity bits.

Register Description
The USART of AVR has five registers, namely UDR, UCSRA, UCSRB, UCSRC and

UBBR. We have already discussed about UBBR earlier in this post, but we will have

another look.

UDR: USART Data Register (16-bit)

Bit 7 6 5 4 3 2 1 0
Ty
RXB[7:0] UDR {Read)
TXB[7:0] UDR (Write)
Read/Write R/W RAW RW RW RW R RW RW
Initial Value 0 0 i} 0 0 0 i} 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer
Registers share the same 1/O address referred to as USART Data Register or UDR.
The Transmit Data Buffer Register (TXB) will be the destination for data written to
the UDR Register location. Reading the UDR Register location will return the
contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the

Transmitter and set to zero by the Receiver.

UCSRA: USART Control and Status Register A
(8-bit)

Bit T 6 5 4 3 2 1 0

l RXC [TXC [UDRE [FE [DOR] PE | u2x [MPCM l UCSRA
Read Write R R R R R R RW R
Initial Value 0 0 1 0 0 0 0 0

e Bit 7: RxC — USART Receive Complete Flag: This flag bit is set by the CPU
when there are unread data in the Receive buffer and is cleared by the CPU
when the receive buffer is empty. This can also be used to generate a
Receive Complete Interrupt (see description of the RXCIE bit in UCSRB
register).

e Bit 6: TxC — USART Transmit Complete Flag: This flag bit is set by the CPU
when the entire frame in the Transmit Shift Register has been shifted out and
there is no new data currently present in the transmit buffer (UDR). The TXC
Flag bit is automatically cleared when a Transmit Complete Interrupt is
executed, or it can be cleared by writing a one (yes, one and NOT zero) to its
bit location. The TXC Flag can generate a Transmit Complete Interrupt (see
description of the TXCIE bit in UCSRB register).

e Bit 5: UDRE — USART Data Register Empty: The UDRE Flag indicates if the
transmit buffer (UDR) is ready to receive new data. If UDRE is one, the buffer
is empty, and therefore ready to be written. The UDRE Flag can generate a
Data Register Empty Interrupt (see description of the UDRIE bit in UCSRB
register). UDRE is set after a reset to indicate that the Transmitter is ready.

e Bit 4: FE — Frame Error: This bit is set if the next character in the receive
buffer had a Frame Error when received (i.e. when the first stop bit of the next

character in the receive buffer is zero). This bit is valid until the receive buffer

(UDR) is read. The FE bit is zero when the stop bit of received data is one.
Always set this bit to zero when writing to UCSRA.

e Bit 3: DOR - Data Overrun Error: This bit is set if a Data OverRun condition is
detected. A Data OverRun occurs when the receive buffer is full (two
characters), and a new start bit is detected. This bit is valid until the receive
buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.

e Bit 2: PE — Parity Error: This bit is set if the next character in the receive buffer
had a Parity Error when received and the parity checking was enabled at that
point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is read.
Always set this bit to zero when writing to UCSRA.

e Bit 1: U2X — Double Transmission Speed: This bit only has effect for the
asynchronous operation. Write this bit to zero when using synchronous
operation. Writing this bit to one will reduce the divisor of the baud rate divider
from 16 to 8 effectively doubling the transfer rate for asynchronous
communication.

e Bit 0: MPCM — Multi-Processor Communication Mode: This bit enables the
Multi-processor Communication mode. When the MPCM bit is written to one,
all the incoming frames received by the USART Receiver that do not contain
address information will be ignored. The Transmitter is unaffected by the
MPCM setting. This is essential when the receiver is exposed to more than
one transmitter, and hence must use the address information to extract the

correct information.

UCSRB: USART Control and Status Register B
(8-bit)

Bit 7 6 5 4 3 2 1 0

[RXCIE | TXCIE | UDRIE | RXEN | TXEN | UCSZz | RXBS | TXBS] UCSRB
Read/Wirite RIW RW RIW R RIW RIW R W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7: RXCIE — RX Complete Interrupt Enable: Writing this bit to one enables
interrupt on the RXC Flag. A USART Receive Complete interrupt will be
generated only if the RXCIE bit is written to one, the Global Interrupt Flag in
SREG is written to one and the RXC bit in UCSRA is set. The result is that
whenever any data is received, an interrupt will be fired by the CPU.

e Bit 6: TXCIE — TX Complete Interrupt Enable: Writing this bit to one enables
interrupt on the TXC Flag. A USART Transmit Complete interrupt will be
generated only if the TXCIE bit is written to one, the Global Interrupt Flag in
SREG is written to one and the TXC bit in UCSRA is set. The result is that
whenever any data is sent, an interrupt will be fired by the CPU.

e Bit 5: UDRIE — USART Data Register Empty Interrupt Enable: Writing this bit
to one enables interrupt on the UDRE Flag (remember — bit 5 in UCSRA?). A
Data Register Empty interrupt will be generated only if the UDRIE bit is written
to one, the Global Interrupt Flag in SREG is written to one and the UDRE bit
in UCSRA is set. The result is that whenever the transmit buffer is empty, an
interrupt will be fired by the CPU.

e Bit 4: RXEN — Receiver Enable: Writing this bit to one enables the USART
Receiver. The Receiver will override normal port operation for the RxD pin
when enabled.

e Bit 3: TXEN — Transmitter Enable: Writing this bit to one enables the USART
Transmitter. The Transmitter will override normal port operation for the TxD

pin when enabled.

e Bit 2: UCSZ2 — Character Size: The UCSZ2 bits combined with the UCSZ1:0
bits in UCSRC register sets the number of data bits (Character Size) in a
frame the Receiver and Transmitter use. More information given along with
UCSZ1:0 bits in UCSRC register.

e Bit 1: RXB8 — Receive Data Bit 8: RXB8 is the ninth data bit of the received
character when operating with serial frames with nine data bits. It must be
read before reading the low bits from UDR.

e Bit 0: TXB8 — Transmit Data Bit 8: TXB8 is the ninth data bit in the character
to be transmitted when operating with serial frames with nine data bits. It must

be written before writing the low bits to UDR.

UCSRC: USART Control and Status Register C
(8-bit)

The UCSRC register can be used as either UCSRC, or as UBRRH register. This is

done using the URSEL bit.

Bit 7 6 5 4 3 2 1 0

[URSEL | UMSEL | UPM1 | UPMO | USBS | UCsSz1 | UCSZ0 | UCPOL | UCSRe
Read/\Write RW RN RW RW RW RAW RW RW
Initial Value 1 0 0 0 0 1 1 0

e Bit 7: URSEL — USART Register Select: This bit selects between accessing
the UCSRC or the UBRRH Register. It is read as one when reading UCSRC.
The URSEL must be one when writing the UCSRC.

e Bit 6: UMSEL — USART Mode Select: This bit selects between Asynchronous

and Synchronous mode of operation.

UMSEL Mode

0 Asynchronous Operation

1 Synchronous Operation

e Bit 5:4: UPM1:0 — Parity Mode: This bit helps you enable/disable/choose the

type of parity.

uUPM1 UPMO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 Enabled, Odd Parity

Bit 3: USBS — Stop Bit Select: This bit helps you choose the number of stop bits for

your frame.
USBS Stop Bit(s)
0 1-bit
1 2-bit

e Bit 2:1: UCSZ1:0 — Character Size: These two bits in combination with the

UCSZ2 bit in UCSRB register helps choosing the number of data bits in your

frame.
ucsz2 ucsz1 ucszo Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 9-bit

Bit 0: UCPOL — Clock Polarity: This bit is used for Synchronous mode only. Write

this bit to zero when Asynchronous mode is used. The UCPOL bit sets the

relationship between data output change and data input sample, and the

synchronous clock (XCK).

Transmitted Data Changed (Output of TxD Received Data Sampled (Input on RxD
UCPOL | Pin) Pin)
0 Rising XCK Edge Falling XCK Edge
1 Falling XCK Edge Rising XCK Edge

UBRR: USART Baud Rate Register (16-bit)

Bit 15 14 13 12 11 10 9 8
URSEL | - | - | = UBRR[11:8]
UBRR[7:0]

7 6 5 4 3 2 1 0
Read/Write RAW R R R RAW RAW RAW RIW
RAW RIW RIW RIW RAW RIW RIW RIW

Initial Value 0 0 0 0 0 i} o 0

0 0 0 0 0 0 0 0

We have already seen this register, except the URSEL bit.

UBRRH
UBRRL

e Bit 15: URSEL: This bit selects between accessing the UBRRH or the UCSRC

Register. It is read as zero when reading UBRRH. The URSEL must be zero

when writing the UBRRH.

Let’s code it!

For Transmitter :
/'k
*Day4 4 1.c
* Created: 03-12-2015 10.38.20 PM

* Author : cc
*/

#include <avr/io.h>
#define F_CPU 16000000UL
#include <util/delay.h>

void USARTInit(uint16_t ubrr_value)

{
UBRRL=ubrr_value;

UBRRH=(ubrr_value>>8);

/lasynchronous mode;no parity;1 stop bit; char size 8

UCSRC=(1<<URSEL)|(1<<UCSZ0)|(1<<UCSZ1);

UCSRB=(1<<RXEN)|(1<<TXEN);

void USARTWriteChar(char data)
{
while('(UCSRA &(1<<UDRE)))

{

}
UDR=data;

int main(void)

{
char data1=21;
char data2=5;
USARTInit(51);

while (1)

{
USARTWriteChar(data1);
_delay_ms(500);
I/USARTWriteChar(data2);

For Receiver
/*
*Day4 4 1.c
* Created: 03-12-2015 10.38.20 PM

* Author : cc
*/

#include <avr/io.h>

#define F_CPU 16000000UL
#include <inttypes.h>
#include <util/delay.h>

void USARTInit(uint16_t ubrr_value)

{
UBRRL=ubrr_value;
UBRRH=(ubrr_value>>8);
/lasynchronous mode;no parity;1 stop bit; char size 8
UCSRC=(1<<URSEL)|(3<<UCSZ0);
UCSRB=(1<<RXEN)|(1<<TXEN);

}

char USARTReadChar()

{

while(!(UCSRA &(1<<RXC)))
{

return UDR;

int main(void)

{
DDRC=0b11111111;

char data;
USARTInit(51);
while (1)
{
data=USARTReadChar();
[*if (data==10)
{
PORTC=0b00000001;
_delay_ms(1000);
PORTC=0b00000000;
_delay_ms(300);

}

if (data==5)

{
PORTC=0b00000010;
_delay_ms(300);
PORTC=0b00000000;
_delay_ms(100);

il

PORTC=data;

Day 5
We start implementing code on USART for different problem statements.

1)Using interrupt we have to transmite data to other uC .

@ Day3_1 - Proteus 8 Professional - Schematic Capture o X
File Edit View Tool Design Graph Debug Library Template System Help

DEHA tEEEAFEE~ @ ¢ +QQ8Q4 D FBE ZEEE &LEF e MHA BED R

g Schematic Capture x @ Design Explorer

= .
1>— Di
* LED-RED
.
i ;
= D2
= @ oevices W oo
i uz ut
w ATHMEGATE : o L LB e e
I T o[22 iy P
LED-RED i PEaTOK (12} B oo
= L poima 22 & PCATDA (-
| PADIADC PCSTO |52 | PAMADCD FCSTOl -
P Sh e ol Forees
A] &
o S| el] s e
= e] o R . e Roana: [
O L Fovccrs 12 ; 18
—= FETITK POSTCIA [0 - FOSCCHA [
@ i (e eosice [0 IEREREEY Pources [12
WAMDINTZ FOTAOCE — FOTIOCE —
abiire:
FRAEE
. [T reamen AEF | e
F o (0N ;o e
/ PrEoAIe | 1] L[] TT1]1 ATNEGATE
L aCC)
I:l =
g n
o7
m . LEDNRED.
]
3
A D2
(enien
F
boo[p Il M|l GMessagels) - ANIMATING: 00:00.06 815068 (CPU load 70) 10000 4000 o

122

A~ tm o i) Bl ENG W

Code for transmitter:-

/*
*Day5 1 1.c

*

* Created: 03-12-2015 12.49.05 PM
* Author : Surya Jeet Singh
*/

#include <avr/io.h>
#include <avr/interrupt.h>

#define F_CPU 16000000UL
#include<util/delay.h>

void USARTInit(uint16_t ubrr_value)

{
UBRRL=ubrr_value;

UBRRH=(ubrr_value>>8);
/lasynchronous mode;no parity;1 stop bit; char size 8
UCSRC=(1<<URSEL)|(1<<UCSZ0)|(1<<UCSZ1);

UCSRB=(1<<RXEN)|(1<<TXEN);

void USARTWriteChar(char data)

{
while((UCSRA &(1<<UDRE)))

{

}
UDR=data;

ISR(INTO_vect)

{
char data1=10;

USARTInIit(51);
USARTWriteChar(data1);

}

ISR(INT1_vect)
{

PORTC=0b00000010;
_delay_ms(1000);
PORTC=0b00000000;

}

int main(void)

{
DDRD=1<<PD2|1<<PDg3;
PORTD=1<<PD2|1<<PD3;

DDRC=0b11111111;

GICR=1<<INTO | 1<<INT1;
MCUCR=(1<<ISC01)|(1<<ISCO00)|(1<<ISC10)|(1<<ISC11);
sei();

while (1)
{

Code for receiver:-
I*
*Day5_1_2.c

*

* Created: 03-12-2015 10.38.20 PM
* Author : Surya Jeet Singh
*

#include <avr/io.h>

#define F_CPU 16000000UL
#include <inttypes.h>
#include <util/delay.h>

void USARTInit(uint16_t ubrr_value)

{
UBRRL=ubrr_value;

UBRRH=(ubrr_value>>8);
Ilasynchronous mode;no parity;1 stop bit; char size 8
UCSRC=(1<<URSEL)|(3<<UCSZ0);

UCSRB=(1<<RXEN)|(1<<TXEN);

char USARTReadChar()
{

while(!(UCSRA &(1<<RXC)))
{

}

return UDR;
}

int main(void)

{
DDRC=0b11111111;

char data;
USARTInit(51);
while (1)
{
data=USARTReadChar();
PORTC=data;
_delay_ms(1000);
PORTC=0b00000000;

}

2)We have to transmitte ADC value to other uC.

3 Day5_2 - Proteus B Professional - Schematic Capture = X
File Edit View Tool Design Graph Debug Library Template System Help

DEEY AEEEGER- @ BE+ +484 9¢|¥ad TEEAHE @48, ElazpED R

E8 Schematic Capture x

k C Iﬁ
» o [ITLL
4 0
L
LEL; s
= U
i 3 — =
oy ATMER RV i RE3 o
T o) s o
= 0]"—\3 : el

] P o] PRREL
= oS = = |
& £ =]

|
- i o] e :
@ i rer L3l
P o) e E | o
- e + e
|:| wrcl g ||
6]
A
+

[[| . | 1\, 7 Messagels] | AMIMATING. 00:00.02. 783955 (CPU load 81%) -4700.0 +1600.0

A

" i e 1221PM
~ i) BNG o s

l*

*Day5_2 1.c

* Created: 04-12-2015 3.57.55 PM
* Author : Surya Jeet Singh

*/

#include <avr/io.h>
#define F_CPU 16000000UL
#include <util/delay.h>

void USARTInit(uint16_t ubrr_value)
{
UBRRL=ubrr_value;
UBRRH=(ubrr_value>>8);

Ilasynchronous mode;no parity;1 stop bit; char size 8
UCSRC=(1<<URSEL)|(1<<UCSZ0)|(1<<UCSZ1);

UCSRB=(1<<RXEN)|(1<<TXEN);
}

void USARTWriteChar(char data)

{
while(!(UCSRA &(1<<UDRE)))

{

}
UDR=data;

}

int main(void)

{

DDRA=0b00000000;
ADMUX=0b00000011;
ADCSRA|=(1<<ADEN)|(7<<ADPS0);
USARTInit(51);

while (1)
{
ADCSRA|=(1<<ADSC);
while(!(ADCSRA & (1<<ADSC)));
if(ADC<256)
{
USARTWriteChar(ADC);

}

*Day5 2 2.c

*

* Created: 03-12-2015 10.38.20 PM
* Author : Surya Jeet Singh
*/

#include <avr/io.h>

#define F_CPU 16000000UL
#include <inttypes.h>
#include <util/delay.h>

void USARTInit(uint16_t ubrr_value)

{
UBRRL=ubrr_value;

UBRRH=(ubrr_value>>8);
/lasynchronous mode;no parity;1 stop bit; char size 8

UCSRC=(1<<URSEL)|(3<<UCSZ0):

UCSRB=(1<<RXEN)|(1<<TXEN);
}

char USARTReadChar()
{

while(!(UCSRA &(1<<RXC)))
{

}

return UDR,;

int main(void)

{
DDRC=0b11111111;

char data;
USARTInit(51);
while (1)
{
data=USARTReadChar();
PORTC=data;

}

3) we have to take multiple ADC value.

3 Day5_3 - Proteus 8 Professional - Schematic Capture

File Edit View Tool Design Graph Debug Library Template System Help
DEES AEEaGEBE~ @ B+ +888Q 9¢|gbE EEEME &2, Ela% pEd

“ [E8 Schematic Capture x

{ "l
klC Tarh
=) ' i
” R
1 225
ECEII P
- o [y
= e
=11 B o R
b L et
B manccn i
i £ = Ruuacer PoaTonG
POTHG Bl e Al
= = Poaaccs P
a i oo
2 s FOZINTD
I3 JECLE o FOANT!
i it
Y Ea ol
S o o2
| e
e
@ T e =t
W
g +
g ulwc'::(\:
oy
@
A
+
P Il W @ tMessage(s) | ANIMATING: 00:05.25.022878 (CPU load 52%) A500.0 420000

p
. T XXX @-=5wso .

/*

*Day5 3.c

* Created: 02-12-2015 12.03.02 AM
* Author : Surya Jeet Singh

*/

#include <avr/io.h>

#define F_CPU 16000000UL
#include <util/delay.h>

volatile uint8 _t x;
volatile uint8 tyvy;

int main(void)

{

uint8_tvy,z;
ADCSRA|=(1<<ADEN)|(1<<ADPSO0)|(1<<ADPS1)|(1<<ADPS2);
ADMUX|=(1<<REFSO0);

DDRA=0b00000000;
DDRC=0b11111111;
DDRD=0b11111111;

while(1)
{

ADMUX=(1<<MUX1);
ADCSRA=0b11000111;
while(((ADCSRA)&(1<<ADSC)));

/ly=readadc(1);
llz=readadc(2);
y=ADC;
PORTC-=y;

/I _delay_ms(500);

ADMUX=1<<MUX1[1<<MUXO0);
ADCSRA=0b11000111;
while(((ADCSRA)&(1<<ADSC)));

z=ADC;
PORTD=z;
/I _delay_ms(500);

After all this we set threshold value for accelerometer.

Day 6

WE that day work on sonar and threshold the accelerometer.

Code For Sonar:-

//We are calculating the distane of object in cm
/[#include "sonar.h"//Including the initialized functions, ports and
variables

#define F_CPU 16000000UL /l CPU Frequency

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>

[
* Define Ports and Pins as required

* Modify Maximum response time and delay as required

* MAX_RESP_TIME : default: 300

* DELAY_BETWEEN_TESTS : default: 50

*/

#define TRIG_DDR DDRD /] Trigger Port

#define TRIG_PORT PORTD

#define TRIG_PIN PIND

#define TRIG_BIT PDO Il Trigger Pin*x*xxees

#define ECHO_DDR DDRD // Echo Port
#define ECHO_PORT PORTD

#define ECHO_PIN PIND

#define ECHO_BIT PD1 /] Echo Pin***sisssssiins

/I Speed of sound

/I Default: 343 meters per second in dry air at room temperature (~20C)
#define SPEED_OF SOUND 343

#define MAX_SONAR_RANGE 4 /I This is trigger + echo
range (in meters) for SR04*******needs thresholding

#define DELAY BETWEEN TESTS 500 I/l Echo canceling
time between sampling. Default: 500us

#define TIMER_MAX 65535 /1 65535 for 16 bit timer
and we are using here TIMER1 which is 16 bit

/*

* Do not change anything further unless you know what you're doing
Please refer data sheet for changes

* */

#define TRIG_ERROR -1

#define ECHO_ERROR -2 //let

#define CYCLES_PER_US (F_CPU/16000000)// instructions per
microsecond

#define CYCLES _PER_MS (F_CPU/1000) /] instructions per
millisecond

/I Timeout. Decreasing this decreases measuring distance

// but gives faster sampling

#define SONAR_TIMEOUT
((F_CPU*MAX_SONAR_RANGE)/SPEED_OF_SOUND)

#define TRIG_INPUT_MODE() TRIG_DDR &= ~(1<<TRIG_BIT)
#define TRIG_OUTPUT_MODE() TRIG_DDR |= (1<<TRIG_BIT)
#define TRIG_LOW() TRIG_PORT &= ~(1<<TRIG_BIT)

#define TRIG_HIGH() TRIG_PORT |=(1<<TRIG_BIT)

#define ECHO_INPUT_MODE() ECHO_DDR &= ~(1<<ECHO_BIT)
#define ECHO_OUTPUT_MODE() ECHO_DDR |= (1<<ECHO_BIT)
#define ECHO_LOW() ECHO_PORT &= ~(1<<ECHO_BIT)

#define ECHO_HIGH() ECHO_PORT |=(1<<ECHO_BIT)

#define CONVERT_TO_CM ((10000*2)/SPEED_OF_SOUND) // or
simply 58

/**

* Initiate Ports for Trigger and Echo pins
*/

void init_sonar();

/**

* Send 10us pulse on Ultrasonic Trigger pin
*/

void trigger_sonar();

/**
* Calculate and store echo time and return distance
* parameter: void

* return type: unsigned int

* Usage: int foo = read_sonar(); - basically syntax
*/

unsigned int read_sonar();

volatile uint32_t overFlowCounter = 0;

volatile uint32_t trig_counter = 0;

volatile uint32_t no_of _ticks = 0;

//To be on the safe side using 32 bit binary data

/***

* Initiate Ultrasonic Module Ports and Pins

* Input: none
* Returns: none
!
void init_sonar(){
TRIG_OUTPUT_MODE(); I/ Set Trigger pin as output
ECHO_INPUT_MODE(); I/l Set Echo pin as input

/***

* Send 10us pulse on Sonar Trigger pin

*1. Clear trigger pin before sending a pulse
* 2. Send high pulse to trigger pin for 10us
* 3. Clear trigger pin to pull it trigger pin low
* Input: none

Returns: none

***/

*

void trigger_sonar(){

TRIG_LOW(); // Clear pin before setting it high
_delay_us(1); I/ Clear to zero and give time for electronics
to set
TRIG_HIGH(); I/ Set pin high
_delay _us(12); // Send high pulse for minimum 10us
TRIG_LOW(); /I Clear pin
_delay_us(1); // Delay not required, but just in case...

}

/***

* Increment timer on each overflow
* Input: none
* Returns: none
!
ISR(TIMER1_OVF_vect){ // Timer1 overflow interrupt
overFlowCounter++;
TCNT1=0;

/***

* Calculate and store echo time and return distance
* Input: none

* Returns: 1. -1 : Indicates trigger error. Could not pull trigger
high

* 2.-2 : Indicates echo error. No echo
received within range

* 3. Distance : Sonar calculated distance in cm.

***/

unsigned int read_sonar()

{
int dist_in_cm = 0;
init_sonar(); /I Setup pins and
ports
trigger_sonar(); I/l send a 10us high pulse
while(!(ECHO_PIN & (1<<ECHO_BIT)))
{ // while echo pin is still low
trig_counter++;
uint32_t max_response_time = SONAR_TIMEOUT;
if (trig_counter > max_response_time)
{ // SONAR_TIMEOUT
return TRIG_ERROR;
}
}
TCNT1=0; /I reset timer
TCCR1B |= (1<<CS10); /I start 16 bit timer
with no prescaler ie taking x=1
TIMSK |= (1<<TOIE1); /I enable overflow
interrupt on timer1
overFlowCounter=0; I reset overflow

counter

sei(); // enable global
interrupts

while((ECHO_PIN & (1<<ECHO_BIT)))
{ // while echo pin is still high
if (((overFlowCounter*TIMER_MAX)+TCNT1) >
SONAR_TIMEOUT)

{
return ECHO_ERROR; /l No echo within
sonar range
}
}
TCCR1B = 0x00; /Il stop 16 bit timer
with no prescalier
cli(); // disable global
interrupts

no_of ticks = ((overFlowCounter*TIMER_MAX)+TCNT1); //
counter count

dist in_cm =
(no_of _ticks/(CONVERT _TO_CM*CYCLES PER_US)); // distance in
cm

return (dist_in_cm);

int main(void)

{
DDRB=0b11111111;
PORTB=read_sonar();
_delay_ms(50);

Day-7

Triple Axis calculation:

Introducing the third axis, the orientation of the sensor determines the
complete sphere. Thus, classical method of rectangular(x,y,z) to spherical (p,0,%)
conversion can be used to relate the angle of tilt in XY plane.

This implies that,
0= tan (Ax.out/Ay.out)

o= cos’l(Az.out/(\/Az.x.out +A2y.0ut + Az.z.out))

Similarly,

o= tan’l(Ax.out/\/Azy.out+A22.0ut)

tan’l(Ay.out/\/Azx.out +A%z.0ut)

b

O tan_l('\/Azy.out+A2x.0ut) Az.out
Sonar receiver code:

//Fuse Bits : 1:EE, h:D9, E:07
#define F CPU 16000000UL

#include <avr/io.h>

#include <util/delay.h>

#include "sonar.h"

#include "sonar.c"

//This function is used to read the available data
//from USART. This function will wait until data is
//available.
uint8 t USARTReadChar ()
{

//Wait until data is available

while (! (UCSRA & (1<<RXC)))

{

//Do nothing

//Now when USART receives data from host
//and it 1s available in the buffer
return UDR;

//This function is used to initialize the USART
//at a given UBRR value
void USARTInit (uintl6 t ubrr value)
{
//Set Baud rate
UBRRL = ubrr value;
UBRRH = (ubrr value>>8);

UCSRC= (1<<URSEL) | (1<<UCSZ0) | (1<<UCSZ1) ;

//Enable The receiver and transmitter
UCSRB= (1<<RXEN) | (1<<TXEN) ;

int main () {
int distance in cm=0;
DDRB=255;
char data;
USARTInit (103);
while (1)
{
DDRB=0xFF;//for setting led to output

//Read data
data=USARTReadChar () ;

//Use the ASCII value to light up the LEDs
PORTB=data;

distance in cm=read sonar();

if (distance in cm<32)

PORTB=0b00001111;

// _delay ms (100);

//break;

// delay ms(100);

/*else({
ADMUX=0b00000000;
ADCSRA=0b11000111;
//while (ADCSRA& (1<<ADSC)) ;
x=ADC;

if (x>=200) PORTB=0b00001010;
1f(x<200 && x>=50) PORTB=0b00000000;
if (x<50) PORTB=0b00000101;

if (distance in cm == TRIG_ERROR)
{
//ERROR! ! !
PORTB=0b11111111;
_delay ms(DELAY BETWEEN TESTS/2);
PORTB=0;
_delay ms(DELAY BETWEEN TESTS/2);

}
else if (distance in cm == ECHO ERROR)
{
//CLEAR!!....No obstacle
PORTB=0b01010101;
_delay ms(DELAY BETWEEN TESTS);

PORTB=0;

}

else

{
//obstacle detected
PORTB=0b11110000;
_delay ms (DELAY BETWEEN TESTS) ;
PORTB=0;

}*/

return O;

The bot after doing the final demonstration of the problem
statement detecting the gesture controlled obstacle avoider

