Visual Odometry in Smoke Occluded Environments

Aditya Agarwal

8 July 2014

Outline

Introduction

Part 1 -

Introduction to Svo Svo using RGBD Odometry Comparison with fovis

Part 2 -

Introduction to Image Dehazing Examined Dehazing Methods Odometry Improvement using Dehazing Conclusions Future Work

Introduction : Micro Aerial Vehicles

- Light and autonomous aerial vehicles
- MAVs have increasing applications

 Industrial inspection - Detect fires on a shipboard [Shipboard project]

Introduction : Visual Odometry

• Estimating pose of vehicle by examining sequence of images from onboard camera

Input

A sequence of RGBD images

A sequence of transorms

Why use VO?

- An efficient tool for trajectory estimation on a shipboard
 - GPS denied environment
 - Light vehicle with limited hardware
 - Ineffectiveness of laser in smoke

How VO works?

D. Scaramuzza and F. Fraundorfer, "Visual odometry [tutorial]," IEEE Robot. Autom. Mag. , vol. 18, no. 4, pp. 80–92, Dec. ₆ 2011

Part 1 : Svo as an odometry method

SVO : Fast semi-direct monocular visual odometry

- State of the art monocular visual odometry method
- Success factors of feature-based odometry methods
- Accuracy and speed of direct methods

Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO : Fast Semi-Direct Monocular Visual Odometry.- Proc. IEEE Intl. Conf. on Robotics and Automation, 2014

Motivation : Svo using RGBD

- Monocular version fails for challenging scenes motion blur, darkness, lack of keypoints, smoke
- Depth filters are unable to converge in a continually changing scene
- Reduce computation

Svo Modifications : Depth Filter

- Probabilistic depth-filter used to estimate depth of 2D features
- Depth filter is removed
- New 3D points are initialized directly when frame is captured

Svo Modifications : Map Initialization

- Svo uses a map containing a set of keyframes and 3D features
- Initial map triangulated from the first two keyframes
- Triangulation not required as depth data is available in initial frame
- Thus 3D map is initialized directly from the first frame

Svo Modifications : Keyframe Selection

- Based on relative Euclidean distance to the previous frame.
- Impose additional condition of relative rotation

Comparisons

al, 2012

Used metrics from "A benchmark for the evaluation of RGBD slam systems" Sturm et

	Method	fr2/desk			
		Translational (RMSE)	Translational (Standard dev)	Rotational (RMSE)	Rotational (Standard dev)
	fovis	0.0116	0.0048	0.58	0.29
	SVO	0.0139	0.008	0.69	0.35

Comparisons

	shadwell/03_level2			
Method	Translational (RMSE)	Translational (Standard dev)	Rotational (RMSE)	Rotational (Standard dev)
fovis	0.0178	0.0105	1.435	0.946
SVO	0.0435	0.0288	1.417	0.944

Computation

Mathad	Algorithm Runtime			Avg CPU
Wethod	Max (ms)	Min (ms)	Avg (ms)	Usage (%)
SVO	19	0.7	4	25
fovis	78	4	23	20

Svo and fovis are both suitable odometry methods for a light MAV, fovis being the more suitable candidate if more accuracy is desired and svo if speed

Part 2 : Odometry in smoke occluded Environment

Why odometry fails in smoke?

- Loss of color contrast, precision and saturation
- Lack of distinguishing *features* in the image
- feature matching across frames is severely degraded
- *matching* for depth edges reduces significantly [Narasimhan2003]

Introduction : Image dehazing

- Restoration of images degraded by presence of turbid medium such as haze, fog or smoke
 - Light reflected by the surface is attenuated
 - Light reflected blends with *airlight*

Input

A single image or multiple images

Output

Restored or enhanced image

Why is dehazing difficult?

- Hazing is spatially variant
 - However traditional contrast enhancing methods act on the image as a whole

Histogram equalization

Why is dehazing difficult?

- Hazing is spatially variant
 - RGBD data may lack depth information in dense smoke

RGB Image

Depth image

Why is dehazing difficult?

- Existing dehazing techniques are for outdoor scenes affected by fog
- Image data is available in RGB

Related Work

- Several techniques have been proposed to remove atmospheric haze from outdoor scenes.
- The techniques can be grouped into :
 - Multiple Image based :
 - Single Image based :
 - Contrast enhancement based
 - RGB based
 - Model based

How to model image hazing?

$$I(x) = t(x)J(x) + (1 - t(x))A$$

I(x) The observed intensity values of the hazy image

J(x) The scene radiance or albedo, **actual colours** of the scene

t(x) The transmission along the light ray, causes attenuation $t(x) = e^{-\beta d(x)}$

(1 - t(x))A A denotes the **ambient** atmospheric light

- Multiple Image Based [Donate2006]
 - Areas of image to are partially visible across different images of same scene
 - Color saturation and high frequency content in images used as a measure of smoke
 - Not applicable for camera in constant motion

- Contrast Enhancement Based [Fattal2014]
 - Color lines are one dimensional distributions of pixels in RGB space
 - Variation in color lines used to recover scene transmission
 - Employs new technique to estimate atmospheric light vector
 - Slow for real time application

- Contrast Enhancement Based [Tarel2009]
 - Estimate airlight using a combination of median filters
 - Enhances overall contrast
 - Image is not darkened
 - Slow for direct real time application

RGB Based [He2010]

- Recovers approximate depth map
- Haze free image has dark pixels which have low intensity in atleast one channel (rgb)
- Uses an optional matting function that is not feasible in real time
- Suitable for color images only
- Darkens overall image

- Depth Model Based [Narasimhan2003]
 - Significant enhancement for depth available regions
 - Suitable for real time application
 - Uses depth data directly to estimate transmission
 - Parameter values are taken as user input
 - No enhancement if depth data is unavailable

 $t(x) = e^{-\beta d(x)}$

Proposed Dehazing Pipeline

Running fovis on dehazed dataset

- Matching and inlier detection is improved
- Still insufficient for tracking

Running fovis on dehazed dataset

Clearly more inliers are extracted after dehazing

Running svo on dehazed dataset

• Feature extraction improve significantly after dehazing

Running svo on dehazed dataset

Reprojection Matches Data in Smoke Frames

- No tracking at all in haze condition
- Intermittent tracking observed for dehazed data

Future Work

- Use RGB dataset
- Automatic selection of depth model dehazing parameters
- Adaptation of svo as an odometry method in haze/smoke conditions
- Recording more smoke datasets for testing

A combination of depth and contrast based dehazing can enhance input image and hence significantly improve performance of semi-direct odometry methods such as svo