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Introduction : Micro Aerial Vehicles

● Light and autonomous aerial vehicles
● MAVs have increasing applications

● Industrial inspection - Detect fires on a shipboard 
[Shipboard project]
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Introduction : Visual Odometry

● Estimating pose of vehicle by examining sequence of images from onboard 
camera

Input Output

A sequence of transormsA sequence of RGBD images
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Why use VO?

● An efficient tool for trajectory estimation on a shipboard
o GPS denied environment
o Light vehicle with limited hardware
o Ineffectiveness of laser in smoke
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How VO works?

D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE Robot. Autom. Mag. , vol. 18, no. 4, pp. 80–92, Dec. 
2011
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Part 1 : Svo as an odometry method
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SVO : Fast semi-direct monocular visual 
odometry

● State of the art monocular visual odometry method
● Success factors of feature-based odometry methods 
● Accuracy and speed of direct methods

Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO : Fast Semi-Direct Monocular Visual Odometry.- Proc. IEEE Intl. Conf. 
on Robotics and Automation, 2014 8



Motivation : Svo using RGBD

● Monocular version fails for challenging scenes - motion 
blur, darkness, lack of keypoints, smoke

● Depth filters are unable to converge in a continually 
changing scene 

● Reduce computation 
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Svo Modifications : Depth Filter

● Probabilistic depth-filter used to estimate depth of 2D 
features

● Depth filter is removed
● New 3D points are initialized directly when frame is 

captured
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Svo Modifications : Map Initialization 

● Svo uses a map containing a set of keyframes and 3D 
features

● Initial map triangulated from the first two keyframes
● Triangulation not required as depth data is available in 

initial frame
● Thus 3D map is initialized directly from the first frame
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Svo Modifications : Keyframe 
Selection 

● Based on relative Euclidean distance to the previous 
frame. 

● Impose additional condition of relative rotation 
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Comparisons

Method

fr2/desk

Translational 
(RMSE)

Translational 
(Standard dev)

Rotational 
(RMSE)

Rotational 
(Standard dev)

fovis 0.0116 0.0048 0.58 0.29

svo 0.0139 0.008 0.69 0.35
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Used metrics from "A benchmark for the evaluation of RGBD slam systems" Sturm et 
al, 2012



Comparisons

Method

shadwell/03_level2

Translational 
(RMSE)

Translational 
(Standard dev) Rotational (RMSE) Rotational 

(Standard dev)

fovis 0.0178 0.0105 1.435 0.946

svo 0.0435 0.0288 1.417 0.944
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Computation

Method 

Algorithm Runtime

Avg CPU 
Usage (%)

Max (ms) Min (ms) Avg (ms)

svo 19 0.7 4 25

fovis 78 4 23 20
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Svo and fovis are both suitable odometry methods for a 
light MAV, fovis being the more suitable candidate if more 

accuracy is desired and svo if speed
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Part 2 : Odometry in smoke 
occluded Environment
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Why odometry fails in smoke?

● Loss of color contrast, precision and saturation
● Lack of distinguishing features in the image
● feature matching across frames is severely degraded
● matching for depth edges reduces significantly [Narasimhan2003]
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Introduction : Image dehazing

● Restoration of images degraded by presence of turbid medium such as 
haze, fog or smoke
o Light reflected by the surface is attenuated   
o Light reflected blends with airlight 

Input Output

Restored or enhanced imageA single image or multiple 
images 19



Why is dehazing difficult?

● Hazing is spatially variant
o However traditional contrast enhancing methods act on the image as a 

whole

Histogram equalization
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Why is dehazing difficult?

● Hazing is spatially variant
o RGBD data may lack depth information in dense smoke 

Depth imageRGB Image

21



Why is dehazing difficult?

● Existing dehazing techniques are for outdoor scenes affected by fog
● Image data is available in RGB

?
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Related Work

● Several techniques have been proposed to remove 
atmospheric haze from outdoor scenes.

● The techniques can be grouped into :
o Multiple Image based :
o Single Image based :

 Contrast enhancement based
 RGB based
 Model based
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How to model image hazing?

The observed intensity values of the hazy image

The scene radiance or albedo, actual colours of the scene

The transmission along the light ray, causes attenuation 

A denotes the ambient atmospheric light
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Examined Dehazing Methods

● Multiple Image Based [Donate2006]
o Areas of image to are partially visible across different images of same 

scene
o Color saturation and high frequency content in images used as a 

measure of  smoke
o Not applicable for camera in constant motion
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Examined Dehazing Methods

● Contrast Enhancement Based [Fattal2014]
o Color lines are one dimensional distributions of pixels in RGB space
o Variation in color lines used to recover scene transmission
o Employs new technique to estimate atmospheric light vector
o Slow for real time application 
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Examined Dehazing Methods

● Contrast Enhancement Based [Tarel2009]
o Estimate airlight using a combination of median filters
o Enhances overall contrast
o Image is not darkened
o Slow for direct real time application
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Examined Dehazing Methods

RGB Based [He2010]
o Recovers approximate depth map
o Haze free image has dark pixels which have low intensity in atleast 

one channel (rgb)
o Uses an optional matting function that is not feasible in real time
o Suitable for color images only
o Darkens overall image
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Examined Dehazing Methods

● Depth Model Based [Narasimhan2003]
o Significant enhancement for depth available regions
o Suitable for real time application
o Uses depth data directly to estimate transmission
o Parameter values are taken as user input
o No enhancement if depth data is unavailable 
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Obtain depth 
and grayscale 

image data

Median filter on 
depth image

Depth model 
based 

dehazing

Contrast 
enhancement

Proposed Dehazing Pipeline
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Running fovis on dehazed dataset

● Matching and inlier detection is improved
● Still insufficient for tracking
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Running fovis on dehazed dataset

● Clearly more inliers are extracted after dehazing
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Running svo on dehazed dataset

● Feature extraction improve significantly after dehazing
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Running svo on dehazed dataset

● No tracking at all in haze condition
● Intermittent tracking observed for dehazed data
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Future Work

● Use RGB dataset
● Automatic selection of depth model dehazing 

parameters
● Adaptation of svo as an odometry method in 

haze/smoke conditions
● Recording more smoke datasets for testing

36



A combination of depth and contrast based dehazing can 
enhance input image and hence significantly improve 

performance of semi-direct odometry methods such as svo
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