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Abstract. In this paper, we propose a computational model of the recognition of real world scenes that bypasses
the segmentation and the processing of individual objects or regions. The procedure is based on a very low dimen-
sional representation of the scene, that we term the Spatial Envelope. We propose a set of perceptual dimensions
(naturalness, openness, roughness, expansion, ruggedness) that represent the dominant spatial structure of a scene.
Then, we show that these dimensions may be reliably estimated using spectral and coarsely localized information.
The model generates a multidimensional space in which scenes sharing membership in semantic categories (e.g.,
streets, highways, coasts) are projected closed together. The performance of the spatial envelope model shows that
specific information about object shape or identity is not a requirement for scene categorization and that modeling
a holistic representation of the scene informs about its probable semantic category.
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I. Introduction

Seminal conceptions in computational vision (Barrow
and Tannenbaum, 1978; Marr, 1982) have portrayed
scene recognition as a progressive reconstruction of
the input from local measurements (edges, surfaces),
successively integrated into decision layers of increas-
ing complexity. In contrast, some experimental stud-
ies have suggested that recognition of real world
scenes may be initiated from the encoding of the
global configuration, ignoring most of the details and
object information (Biederman, 1988; Potter, 1976).
Computational and experimental schools achieve dif-
ferent objectives of recognition: for the former, recog-
nition is a reconstruction procedure of the 3D scene
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properties that is an essential step in tasks involving
movement or grasping. For the latter, recognition of
the scene implies providing information about the se-
mantic category and the function of the environment.

In the research described hereafter, we propose a
computational model of the recognition of scene cate-
gories that bypasses the segmentation and the process-
ing of objects. In that regard, we estimate the structure
or “shape of a scene” using a few perceptual dimen-
sions specifically dedicated to describe spatial prop-
erties of the scene. We show that holistic spatial scene
properties, termed Spatial Envelope properties, may be
reliably estimated using spectral and coarsely localized
information. The scene representation characterized by
the set of spatial envelope properties provides a mean-
ingful description of the scene picture and its semantic
category.
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The paper is organized as follows: Section II de-
scribes recent experimental results about scene recog-
nition. Section III introduces the concept of Spatial
Envelope as a holistic descriptor of the main structure
of a scene. Section IV gives an overview of computa-
tional models of scene recognition, and explains our ap-
proach, based upon the spectral signature of scene cat-
egories. Section V addresses the computational model
per se, and details the computation of the spatial enve-
lope properties. Section VI evaluates recognition per-
formance of the model. The last section discusses issues
related to the problem of semantic scene recognition.

II. Scene Recognition

A. What is a Scene?

This study is dedicated to the representation of envi-
ronmental scenes (see section V.B for a description of
the database). In an attempt to define what a “scene”
is, as opposed to an “object” or a “texture”, we propose
to consider the absolute distance between the observer
and the fixated zone. Therein, if an image represents an
“object” when the view subtends 1 to 2 meters around
the observer, a “view on a scene” begins when there
is actually a larger space between the observer and the
fixated point, usually after 5 meters. Thus, whilst most
of the “objects” are at a hand distance, a scene is mainly
characterized as a place in which we can move.

B. Scene Recognition Studies

A number of experimental studies have demonstrated
that we integrate enough information about the mean-
ing of a scene in less than 200 ms (Potter, 1975; for a
review see Henderson and Hollingworth, 1999). In fact,
we recognize its “gist”1 as quickly and as accurately as
a single object (Biederman, 1988). Fast scene recog-
nition performances may be mediated by the spatial
arrangement of the objects and the scene ground plane
(e.g. the “spatial layout”, Hochberg, 1968; Sanocki
and Epstein, 1997). Scene meaning may also be driven
from the arrangement of simple volumetric forms, the
“geons” (Biederman, 1987), and even by the spatial re-
lationships between unspecified blobs of specific size
and aspects ratios (Schyns and Oliva, 1994; Oliva and
Schyns, 1997; see also Carson et al., 1997,1999, in
the computational domain). These studies among oth-
ers (see Rensink et al., 1997) suggested that object in-

formation might be spontaneously ignored during the
rapid categorization of environmental pictures. Coarse
blobs made of spatial frequency as low as 4 to 8-
cycles/image provided enough information for instant
recognition of common environments even when the
shape and the identity of the objects could not be re-
covered (Oliva and Schyns, 2000). In a related vein,
several studies about scene viewing and scrutinizing
(O’Regan et al., 1999; Rensink, 1999; Rensink et al.,
1997; Simon and Levy, 1997) have demonstrated that
subjects can be totally blind to object changes (as dis-
placement and suppression) even when these changes
affect meaningful parts of the scene. To summarize,
experimental evidence suggests that, when viewing a
scene for a short time, we extract enough visual infor-
mation to accurately recognize its functional and cate-
gorical properties (e.g., people in a street, surrounded
by tall buildings) whereas we overlook most of the per-
ceptual information concerning the objects and their lo-
cations. The primary semantic representation appears
to be built on a low resolution spatial configuration.

III. The Spatial Envelope: A Representation
of the Shape of a Scene

A. The Shape of a Scene

From all of the visual properties, shape is the manda-
tory property that carries the identity of visual stimuli.
However, if theories of holistic shape representation for
objects are well acknowledged (e.g., template match-
ing), speaking about the shape of a scene appears odd
at first. A scene is usually understood as an uncon-
strained configuration of objects, and consequently, its
semantic recognition may need to initially find the ob-
jects and their exact location. Looking at the pictures of
Fig. 1, it is almost impossible to neglect the identities of
objects, therein, we have the impression of actively us-
ing them for recognizing the scene. In this paper, rather
than looking at a scene as a configuration of objects, we
propose to consider a scene like an individual object,
with a unitary shape. As an illustration, Fig. 1 shows a
surface presentation of images. Along this representa-
tion, the 3D cues are not perceived anymore neither are
the precise forms nor the identity of objects. While the
scene pictures and their surface representations contain
the same pictorial information, the surface pictures may
be conceptualized as a unitary form (rather complex),
with concave and convex regions of different sizes and
amplitudes.
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Figure 1. Scenes with different spatial envelopes and their surface representation, where the height level corresponds to the intensity at each
pixel (images were low-passed): a) skyscrapers, b) an highway, c) a perspective street, d) view on a flat building, e) a beach, f) a field, g) a
mountain and e) a forest. The surface shows the information really available after projection of the 3D scene onto the camera. Several aspects
of the 3D scene have a direct transposition onto the 2D surface properties (e.g., roughness).

Similarly to object categories like car or animal, in
which the exemplars usually look alike because they
have the same “function”, we will show that scenes
belonging to the same category share a similar and
stable spatial structure that can be extracted at once,
and without segmenting the image. We will show that
perceptual properties exist that can be uncovered from
simple computations, and that these properties can be
translated into a meaningful description of the space of
the scene. We term this description the Spatial Enve-
lope representation, as it mainly refers to qualities of
the space (e.g., open, small).

B. Definition of the Spatial Envelope

Similar to the vocabulary employed in architecture, the
Spatial Envelope of an environment is made by a com-
posite set of boundaries, like walls, sections, ground, el-
evation and slant of the surfaces that define the shape of
the space. For example, the spatial boundaries of most
city views would be made of the facades of the build-
ings connected to the pavement as a ground and the sky
as a ceiling. Most freeways look like a large surface
stretching to the horizon line, filled-in with concavities
(e.g., vehicles) whereas a forest scene will comprise an
enclosed environment, vertically structured in the back-
ground (trees), and connected to a textured horizontal
surface (grass). The spatial envelope is represented by
the relationship between the outlines of the surfaces
and their properties including the inner textured pat-
tern generated by windows, trees, cars, people etc.

C. Spatial Categories

Environments are commonly named using precise se-
mantic terms, like beach, street or forest (see Tversky

and Hemenway, 1983). But that level of description
does not explicitly refer to the scene structure. Therein,
we performed a categorization task intended to describe
the dimensions that would sketch the spatial envelope
of the scene.

Several studies have proposed perceptual proper-
ties for representing texture images (Amadasun and
King, 1989; Rao and Lohse, 1993; Tamura et al., 1978;
Heaps and Handel, 1999). Rao and Lohse (1993) found
that the three first dimensions used for distinguishing
between textures are repetitiveness (vs. irregularity),
contrast (correlated with directionality) and the de-
gree of granularity or complexity of the texture. But
in the context of real-world scenes, identification of
such properties is an unexplored research field. Similar
descriptions have often been reduced to vague notions
such as orientations of contours, boundaries, clusters of
“forms” (Biederman, 1988), or low spatial frequency
blobs (Schyns and Oliva, 1994; Oliva and Schyns,
2000). In this respect, we designed an experiment
for identifying meaningful dimensions of the scene
structure.

Seventeen observers were asked to split 81 pictures
into groups. They were told that scenes put in the same
group should have a similar global aspect, a similar
global structure or similar elements. They were explic-
itly told not to use a criteria related to the objects (e.g.,
cars vs. no cars, people vs. no people) or a scene se-
mantic groups (e.g., street, beach). The task consisted
of three steps. The first step was to divide the 81 pic-
tures into two groups. In the second step, subjects split
each of the two groups into two more subdivisions, and
in the third step, subjects split the four groups into two
groups each, leaving a total of 8 subgroups. At the end
of each step, subjects were asked to explain the cri-
teria they used in a few words. The taxonomy shown
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Table 1. Spatial envelope properties of
environmental scenes.

Property S1 S2 S3 Total

Naturalness 65 12 0 77

Openness 6 53 24 83

Perspective 6 18 29 53

Size 0 0 47 47

Diagonal plane 0 12 29 41

Depth 18 12 29 59

Symmetry 0 0 29 29

Contrast 0 0 18 18

Results are in %, for each of the three ex-
perimental steps. The total represents the
percent of times the attribute has been used
regardless of the stage of the experiment.

in Table 1 summarizes the different criteria. The two
first criteria concerned the naturalness status of the en-
vironment (man-made scenes, urban vs. natural land-
scapes) and the openness of the environment, respec-
tively chosen by 77% and 83% of the subjects. The
notion of openness was mainly described as open vs.
closed-enclosed environment, scenes with horizon vs.
no horizon, a vast or empty space vs. a full, filled-in
space. Three other important criteria were perspective
(mostly used for urban scenes), size, (referring to small
or detailed vs. big elements) and diagonal planes. That
last criteria mostly referred to undulating landscapes,
mountains and rocks, and was also termed as “eleva-
tion plane”, “contours going down”, “falling lines”, or
“sharpness”. In terms of depth criteria, the descriptions
given by subjects were not unique, as they were refer-
ring to different space properties. Three observers who
responded “depth” were actually referring to distant
“open scenes” vs. proximate and “closed scenes”. Two
subjects who choose “depth” actually grouped images
according to the degree of “expansion” of the environ-
ment (going away vs. closed) and five other subjects
meant the “size” of the elements (“close and small”
vs. “far and large”). Lastly, criteria of major impor-
tance for object classification such as the symmetry and
the contrast were poorly chosen. It may seem surpris-
ing that symmetry does not emerge as a major spatial
property, but that result is in agreement with another
experimental study showing that symmetry (and also
continuity) are not constraints taken into account when
subjects have to quickly recognize an environmental
scene (Sanocki and Reynolds, 2000).

D. Spatial Envelope Properties

Based on the experimental results, we considered the
following five spatial envelope properties.

• Degree of Naturalness. The structure of a scene
strongly differs between man-made and natural en-
vironments. Straight horizontal and vertical lines
dominate man-made structures whereas most nat-
ural landscapes have textured zones and undulating
contours. Therefore, scenes having a distribution of
edges commonly found in natural landscapes would
have a high degree of naturalness whereas scenes
with edges biased toward vertical and horizontal ori-
entations would have a low degree of naturalness.

• Degree of Openness. A second major attribute of the
scene spatial envelope is its sense of Enclosure.2 A
scene can have a closed spatial envelope full of visual
references (e.g., a forest, a mountain, a city center),
or it can be vast and open to infinity (e.g., a coast,
a highway). The existence of a horizon line and the
lack of visual references confer to the scene a high
degree of Openness. Degree of Openness of a scene
decreases when the number of boundary elements
increases.

• Degree of Roughness. Roughness of a scene refers
principally to the size of its major components. It
depends upon the size of elements at each spatial
scale, their abilities to build complex elements and
their relations between elements that are also assem-
bled to build other structures, and so on. Roughness
is correlated with the fractal dimension of the scene
and thus, its complexity.

• Degree of Expansion. Man-made structures are
mainly composed of vertical and horizontal struc-
tures. However, according to the observer’s point of
view, structures can be seen under different perspec-
tives. The convergence of parallel lines gives the per-
ception of the depth gradient of the space. A flat view
of a building would have a low degree of Expansion.
On the contrary, a street with long vanishing lines
would have a high degree of Expansion.

• Degree of Ruggedness. Ruggedness refers to the de-
viation of the ground with respect to the horizon
(e.g., from open environments with a flat horizon-
tal ground level to mountainous landscapes with a
rugged ground). A rugged environment produces
oblique contours in the picture and hides the horizon
line. Most of the man-made environments are built
on a flat ground. Therefore, rugged environments are
mostly natural.
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Computations of degree of openness and degree
of roughness would apply to any type of real world
scenes. However, degree of expansion characterizes ur-
ban scenes better than natural landscapes. Convergence
of parallel lines exists in natural landscapes but they
are rare because of the lack of straight, long thin lines
(as a counter example, a canyon may exhibit long cor-
ridors comparable to a long street). Similarly, degree
of ruggedness characterizes natural landscapes (e.g.,
peaks and mountains) better than man-made scenes
(to the exception of specific constructions such as the
pyramids or some modern buildings). Therefore, the
purpose of the spatial envelope model is to show that
modeling these five spatial properties is adequate to
perform a high-level description of the scene. In that re-
gard, the next section defines the level of scene descrip-
tion we attempt to achieve as well as the image-based
representation relevant for that level of description.

IV. Modeling the Scene Structure

In this section, we begin with an overview of the com-
putational systems dedicated to scene recognition, and
we present the different levels of description used for
representing a scene. Then, we introduce the basis of
the scene representations based on Fourier Transform
and Principal Components Analysis. We show how the
second order statistics of real world images are strongly
constrained by the categories to which they belong.

A. Levels of Description and Scene Models

Scene models and the related computational approa-
ches depend on the task to be solved (e.g., 3D recon-
struction, object recognition, scene categorization) and
the level of description required. Inspired by the ter-
minology introduced by Rosch and Mervis (1975) for
object description, the description of an environmen-
tal scene can be done at three different levels: Subor-
dinate level (e.g., cars and people in a street), basic-
level (e.g., a street), and superordinate level (e.g., an
urban environment). Although not much attention has
been paid to these levels of representation in compu-
tational vision, in particular in scene recognition mod-
els, these three descriptions provide different levels of
abstraction and thus, different semantic information.
Consequently, these three levels of description require
different computational approaches.

Subordinate Level. This level of description requires
the analysis of local structures, the recognition of ob-
jects or the labeling of regions in the image (e.g., grass,
sky, building, people). In the framework of image re-
trieval, Carson et al. (1997, 1999) have proposed an
image representation, termed Blobworld, that recog-
nizes the image as a combination of objects. Basically,
after segmenting the image into regions well specified
in terms of texture and color, the system searches for
images in the database with similar configurations and
sizes of the constituent regions. Consequently, the in-
ternal representation given by Blobworld is typically
performed at the level of objects, so the system per-
forms much better when searching for distinctive ob-
jects in a simple background (e.g., pictures with faces,
a specific animal in its natural environment) than when
searching for more abstract categories. De Bonet and
Viola (1997) proposed a different approach for scene
representation that could also refer to a subordinate
description. The image is represented by a high di-
mensional features vector obtained from the output of
a tree of non-linear filters. Their system retrieves spe-
cific pictures of objects based on the similarity between
regions with particular textural, spatial and color prop-
erties (e.g., sport cars, sunsets). But their method, based
as it is on a very high dimensional signature, does not
allow the formation of an internal meaningful repre-
sentation of the scene.

Basic Level. The basic level categorization corre-
sponds to the most common categorical representa-
tion (e.g. forest, mountain, street). Members of a basic
level category usually have a similar shape (e.g. sim-
ilar components) and share the same function. In that
regard, Lipson et al. (1997) encoded the global con-
figuration of a scene by using spatial and photometric
relationships within and across predetermined regions
of images. They show that the design of flexible spatial
templates can successfully classify natural scenes with
the constraint that the categories are geometrically well
defined (e.g., blue blob above white blob above brown
blob, for a snowy mountain).

Superordinate level. This level of description corre-
sponds to the highest level of abstraction, and there-
fore, it has the lowest visual category resemblance.
Several studies have focused on this level of descrip-
tion: Gorkani and Picard (1994) classified pictures into
two categories (cities and natural landscapes) based on
the statistics of orientations in the image. Szummer
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and Picard (1998) discriminated between indoor and
outdoor environments based on color and texture fea-
tures. Vailaya et al. (1998, 1999) have proposed a more
complete set of categories (indoor, outdoor, city, land-
scapes, and sunsets, mountains and forests). Common
to all of these methods is the use of a scene represen-
tation based on color and edge statistics that classify
scenes in exclusive classes.

In this paper, we intend to represent the structure of
a scene image at both a superordinate level and a basic
level. We will first use the spatial envelope attributes
for building an abstract description of the scene (e.g.,
natural, open, expanded, small, among others) and we
will show that the spatial envelope attributes provide a
meaningful description of the space that the image sub-
tends (e.g., perspective view of a large urban space with
small elements) that allows inference of its probable ba-
sic level category (e.g., street). For now, we present in
the following section, the image-based representation.

B. Image-Based Representations

The discrete Fourier transform (DFT) of an image is
defined as:

I ( fx , fy) =
N−1∑

x,y=0

i(x, y)h(x, y)e− j 2 π( fx x+ fy y)

= A( fx , fy) e j�( fx , fy) (1)

i(x, y) is the intensity distribution of the image3 along
the spatial variables (x, y), fx and fy are the spatial fre-
quency variables. h(x, y) is a circular Hanning window
to reduce boundary effects. Due to the spatial sampling,
I ( fx , fy) is a periodic function. The central period is
( fx , fy) ∈ [−0.5, 0.5]×[−0.5, 0.5], units are in cycles
per pixel. The complex function I ( fx , fy) is the Fourier
transform that can be decomposed into two real terms:
A( fx , fy) = |I ( fx , fy)|, the amplitude spectrum of the
image, and �( fx , fy), the phase function of the Fourier
transform.

The phase function �( fx , fy) represents the in-
formation relative to the local properties of the im-
age. It contains information relative to the form and
the position of image components (Morgan et al.,
1991, Piotrowski and Campbell, 1982). By contrast,
A( fx , fy) gives unlocalized information about the im-
age structure: the amplitude spectrum represents the
spatial frequencies spread everywhere in the image,
and thus informs about the orientation, smoothness,
length and width of the contours that compose the scene

picture. The squared magnitude of the Fourier trans-
form (energy spectrum) gives the distribution of the
signal’s energy among the different spatial frequencies.
Therefore, the energy spectrum provides a scene repre-
sentation invariant with respect to object arrangements
and object identities, encoding only the dominant struc-
tural patterns present in the image. Previous studies
have shown that such unlocalized information can be
relevant for simple classification tasks (e.g., Gorkani
and Picard, 1994; Guerin and Oliva, 2000; Oliva et al.,
1999; Torralba and Oliva, 1999, submitted; Szummer
and Picard, 1998; Vailaya et al., 1998, 1999). In the
next section, we will provide more evidence that the
statistics of unlocalized spectral features are strongly
constrained for several scene categories.

Another relevant piece of information for image rep-
resentation concerns the spatial relationships between
the main structures in the image (e.g., Carson et al.,
1997, 1999; De Bonet and Viola, 1997; Lipson et al.,
1997; Torralba and Oliva, 1999). Spatial distribution of
spectral information can be described by means of the
windowed Fourier transform (WFT):

I (x, y, fx , fy)

=
N−1∑

x ′,y′=0

i(x ′, y′) hr (x ′ − x, y′ − y)e− j 2π( fx x ′+ fy y′)

(2)

where hr (x ′, y′) is a hamming window with a circu-
lar support of radius r . The localized energy spectrum
(spectrogram), A(x, y, fx , fy)

2 = |I (x, y, fx , fy)|2,
provides localized structural information and it can be
used for a detailed analysis of the scene by using a
small size window. As one of the goals of this study
is to show that scene categorization can be achieved
bypassing object recognition stages, we chose a rep-
resentation with a poor spatial resolution (e.g., Carson
et al., 1999; Lipson et al., 1997; Torralba and Oliva,
1999). More specifically, we computed the WFT at
8 × 8 spatial locations with large overlapping neigh-
borhoods, with a diameter of 64 pixels each.

Both the global energy spectrum and the spectro-
gram provide high dimensional representations of the
input image i(x, y). Common techniques used in pat-
tern recognition for feature extraction and dimensional-
ity reduction are the Karhunen-Loeve Transform (KLT)
and the Principal Component Analysis (PCA). The
KLT yields a decomposition of a random signal by a set
of orthogonal functions with decorrelated coefficients.
Dimensionality reduction is achieved by the PCA by
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Figure 2. The first eight principal components for energy spectra of real-world scenes. The frequency fx = fy = 0 is located at the center of
each image.

Figure 3. The first six principal components of the spectrogram of real-world scenes. The spectrogram is sampled at 4 × 4 spatial location for
a better visualization. Each subimage corresponds to the local energy spectrum at the corresponding spatial location.

considering only the KL functions that account for the
maximal variability of the signal described.

The energy spectrum can be decomposed into a KL
basis as follows:

A( fx , fy)
2 �

NG∑
i=1

vi ψi ( fx , fy) (3)

and, similarly, the spectrogram:

A(x, y, fx , fy)
2 �

NL∑
i=1

wi �i (x, y, fx , fy) (4)

NG and NL are the number of functions used for the
approximations and determine the dimensionality of
each representation. The coefficients vi and wi of the
decompositions are obtained as:

vi = 〈A2, ψi 〉
=

∫ ∫
A( fx , fy)

2 ψi ( fx , fy) d fx d fy (5)

and

wi =
∑

x

∑
y

∫ ∫
A(x, y, fx , fy)

2

×�i (x, y, fx , fy) d fx d fy (6)

ψi ( fx , fy) are the KL basis of the energy spectrum
and verify orthogonality 〈ψi , ψ j 〉 = 0 and decorrela-
tion of the decomposition coefficients E[vi v j ] = 0 for
i �= j . The functions �i (x, y, fx , fy) are the KL basis

of the localized energy spectrum providing also an or-
thogonal basis with decorrelated decomposition coeffi-
cients. Figures 2 and 3 show the KL basis obtained (see
appendix). The visualization provides a simple inter-
pretation of how the coefficients vi and wi are obtained
from the energy spectrum and the spectrogram respec-
tively. The KL decompositions of the energy spectrum
and the localized energy spectrum provide two sets of
features for representing the scene structure:

• v = {vi }i=1,NG : provides unlocalized structural infor-
mation. v contains a low-resolution description of the
energy spectrum of the image.

• w = {wi }i=1,NL : provides structural information with
a description of the spatial arrangement. Due to the
reduced dimensionality (NL < 50), the representa-
tion has a low resolution in both spectral and spatial
domains.

The two representations are redundant as the infor-
mation provided by v is contained in the more complete
description provided by w. Therefore, only the repre-
sentation performed by the WFT is required. Never-
theless, the unlocalized spectral information provides
a simple way to represent the frequency components
that dominate the whole image while it may help to
understand the basic structural differences between en-
vironments of different sorts. It must be noted that both
representations v and w are holistic as they encode the
whole image without splitting it into objects or regions.

We will provide through the paper, results for
both the unlocalized (energy spectra) and localized
(spectrogram) representations with the aim to measure
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their respective contribution to the scene representa-
tion. In Sections V and VI, we will show that even un-
localized structural information is capable of providing
reliable information about the spatial envelope proper-
ties of a scene and its category, although more accurate
results are obtained from the WFT. But, for now, in
order to illustrate the nature of the structural informa-
tion that differentiates scene categories, we review in
the next section studies in the field of image statistics
and in particular, with a focus into the second order
statistics (energy spectrum) of real-world images. We
have extended those studies showing that real-world
images corresponding to different categories have very
different second order statistics, and thus global struc-
ture. Therefore, we can expect that the representations
v and w may provide discriminant information about
the spatial envelope and the scene category.

C. Spectral Signature of Scene Categories

Studies devoted to the statistics of real-world images
have observed that the energy spectra of real-world
images fall in average with a form 1/ f α with α ∼ 2
(or α ∼ 1 considering the amplitude spectrum). The
average of the energy spectrum provides a description
of the correlation found in natural images (Field, 1987,
1994; van der Schaaf and van Hateren, 1996), and it
has several implications for explaining the processing
carried out by the first stages of the visual system (Field,
1987; Atick and Redlich, 1992). In that regard, a few
studies have shown that different kinds of environments
exhibit very specific and distinctive power spectrum
forms (e.g., Baddeley, 1997; Oliva et al., 1999; Switkes
et al., 1978).

In order to illustrate the structural aspects that
are captured by the energy spectrum, we computed
the spectral signatures of the following basic level
scene categories: tall buildings, highways, city close-
up views and city centers for man-made environments,
and coasts, mountains, forests and close-up views for
natural scenes. The spectral signatures were computed
by averaging the energy spectrum of hundreds of ex-
emplars for each category. The spectral signatures can
be adequately approximated by a function:

E[A( f, θ)2 | S] � �s(θ)/ f −αs (θ) (7)

where E[A( f, θ)2 | S] is the expected value of the
energy spectrum for a set of pictures belonging to
the category S. Spatial frequencies are represented in

Figure 4. Examples of sections at different orientations of the av-
eraged energy spectrum for three scene categories, and the corre-
sponding linear fitting.

polar coordinates ( f, θ). Functions �(θ) and α(θ) are
obtained by a linear fitting of the averaged energy spec-
trum on logarithmic units for each orientation θ (see
van Der Schaaf and van Hateren (1996) for a detailed
analysis). Figure 4 shows examples of the linear fitting
for different orientations for three scene categories and
Fig. 5 shows the spectral signatures of the eight scene
categories. The model of Eq. (7) provides correct fit-
ting for all the eight categories for frequencies below
0.35 cycles/pixel (as noise and aliasing corrupt higher
spatial frequencies, see Fig. 4).

The functions �(θ) and the function α(θ) are related
to different perceptual features. The function �(θ) re-
veals the dominant orientations of a scene category (see
Fig. 5). The function α(θ), represents the slope of the
decreasing energy spectrum values, from low to high
spatial frequencies. The slope varies as a function of
the complexity of the scene. Pentland (1984) showed
that fractal natural surfaces (as mountains, forests) pro-
duce a Fractal image with an energy spectrum of the
form 1/ f α , where α is related to the fractal dimension
of the 3D surface (e.g., its roughness). Slope charac-
teristics may be grouped in two main families: a slow
slope (α ∼ 1) for environments with textured and de-
tailed objects and a steep slope (α ∼ 3) for scenes with
large objects and smooth edges. The slower is the slope,
the more textured the image is. Examples of scenes
categories with different slopes and therein with dif-
ferent roughness, are shown in Fig. 5(c) and (d) and
(g) and (h). Even thought they have similar dominant
orientations �(θ), their spectral signatures differ in the
function α(θ).

When considering a large number of real-world
scenes without differentiating among different cate-
gories, the images have stationary statistics. How-
ever, in contrast to images of textures where most of
the statistics are stationary regardless of the category,
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Figure 5. Examples of scenes from different categories, their respective energy spectrum (energy spectra have been multiplied by f 2 in order
to enhance the visibility of high spatial frequencies) and the spectral signatures of their category: function �s(θ) and the bottom line shows the
function αs(θ) in a polar diagram. From a) to h), scenes illustrate the categories: tall building, highway, urban close-up views, city center, coast,
mountain, natural close up views and forests.

environmental scenes belonging to the same category
are characterized by particular arrangements of struc-
tures within the image (Lipson et al., 1997; Torralba
and Oliva, 1999). For instance, a street is composed
of the road, buildings and the sky that are arranged
in a very predictive way. This arrangement of image
regions with different structural characteristics that is
typical of the category street introduces a spatial non-
stationary behavior of the statistics of the image when
considering a large set of images belonging to the same
scene category. This non-stationary behavior is typical
of several scene categories and provides relevant infor-
mation for the determination of the category of which
a scene picture belongs. The spatial non-stationary be-
havior of the second order statistics can be studied by
the spectrogram as introduced in Section IV(b). Figure
6 shows the mean spectrogram obtained from averaging
the spectrogram of hundreds of scene pictures belong-
ing to the same category. The categories shown in Fig. 6
are: man-made open (a) and urban vertically structured
(b) environments, perspective views of streets (c), far
view of city-center buildings (d) and close-up views of
outdoor urban structures (e) and natural open (f) and en-
closed (g) environments, mountainous landscapes (h),
enclosed forests (i) and close-up views of non-textured
natural structures like rocks and water (j). It must be

noted that non-stationarity is a characteristic of open
environments (a) and (f) and semi open environments
as (b), (c) and (h). Open and semi open environments,
which correspond to large spaces, have strong organi-
zation rules of their main scene components (support
surfaces, horizon line, sky, vertical and textured struc-
tures). However, enclosed environments (d), (e), (g),
(i) and (j) are almost stationary in the second order
statistics. Enclosed environments (as forests, small ur-
ban spaces, etc.), although they differ in the constituent
structural elements (energy spectrum), do not have very
strong organizational rules.

V. Estimation of the Spatial Envelope Properties

The structural differences between scene categories
provide a cue for scene recognition that does not require
previous region labeling or individual object recogni-
tion. The goal of this section is the estimation of the
spatial envelope attributes from the two spectral repre-
sentations. In particular, we will look for the spectral
attributes and the spatial organizations that are corre-
lated with the spatial envelope attributes.

The principal components of each of the two image
representations (the global energy spectrum and the
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Figure 6. Examples of sections of the mean spectrogram (see the text for a detailed description).

spectrogram), define an image-based feature space into
which each scene can be projected. However, the con-
tribution of each feature cannot be understood as they
stand, and more importantly, they are not directly mean-
ingful to human observers. Spatial envelope properties
represent the scene in a very low dimensional space in
which each dimension depicts a meaningful property
of the space of the scene. Therein, it is possible to as-
sign a specific interpretation to each dimension: along
the openness dimension, the image refers to an open or
a closed environment; along the roughness dimension,
the scene refers to an environment made with small
vs. large elements (this relates to the complexity of the
scene and the size of the space), etc.

A. Discriminant Spectral Templates

The estimation of the spatial envelope attributes from
image-based features can be solved using different re-
gression techniques. In the case of a simple linear re-
gression, the estimation of a scene attribute s from the
global spectral features v of a scene picture can be
written as:

ŝ = vT d =
NG∑

vi di

=
∫ ∫

A( fx , fy)
2 DST( fx , fy) df x df y

(8)

with (from Eq. (6)):

DST( fx , fy) =
NG∑

di ψi ( fx , fy) (9)

Although more complex non-linear regression models
can be used (e.g., mixtures of experts, etc. See Ripley,
1996), the linearity of the operations in Eq. (8) pro-
vides a simple writing of the estimation process giving
a simple interpretation of the system behavior. For in-
stance, Eq. (8) shows that the spatial envelope property
s is estimated by a dot product between the amplitude
spectrum of the image and a template DST( fx , fy). The
DST (Discriminant Spectral Template) is a function that
describes how each spectral component contributes to
a spatial envelope property (Oliva et al., 1999; Tor-
ralba and Oliva, 1999). The DST is parameterized by
the column vector d = {di } which is determined during
a learning stage detailed below.

A similar estimation can be performed when using
the spectrogram features w:

ŝ = wT d =
NL∑

i=1

wi di =
∑

x

∑
y

∫ ∫
A(x, y, fx , fy)

2

× WDST(x, y, fx , fy) d fx d fy (10)

with:

WDST(x, y, fx , fy) =
NL∑

i=1

di �i (x, y, fx , fy) (11)
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The WDST (Windowed Discriminant Spectral Tem-
plate) describes how the spectral components at dif-
ferent spatial locations contribute to a spatial envelope
property (Torralba and Oliva, 1999). The sign of the
values of the WDST indicates the sign of the correla-
tion between the spectral components and the spatial
envelope property s.

In order to determine the parameters d related to a
specific property of the spatial envelope, we used the
following learning procedure: we selected a random set
of 500 scene pictures from the database (see section
V.B) and we placed them along an axis sorted accord-
ing to the spatial envelope property that we wanted to
estimate. The training set consists in the features vec-
tors {vt }t=1,500 (or {wt }t=1,500) and the corresponding
values of the spatial envelope property {st }t=1,500 given
by the location of each picture along the axis. For each
picture, we estimate the attribute as ŝt = vT

t d + d0,
where d0 is a constant. The constant d0 is not con-
sidered in Eqs. (8) and (10) as it does not affect the
organization and the discrimination performances of
the attribute. The parameters vector d that minimize
the mean squared error is (e.g., Ripley, 1996):

d1 = (
V1VT

1

)−1
V1s (12)

The column t of the matrix V1 corresponds to a vector
composed by the features vector of the image t and a
1: [vt ; 1]. The vector d1 contains the DST parameters
(or WDST) and the constant term d0 : d1 = [d; d0].
The inversion of the matrix (V1VT

1 )−1 may be ill con-
ditioned if the number of spectral features used for the
learning (NG or NL ) is too large.

The regression procedure is appropriate for attributes
that organize scenes in a continuous manner (e.g., de-
gree of openness, expansion, ruggedness, and rough-
ness). However, some scene properties refer to a binary
classification (e.g., man-made vs. natural, indoor vs.
outdoor, objects vs. environments, etc.). The discrimi-
nation of two classes can be performed by assigning to
the images of each class the attribute values st = −1
or st = 1 for the two classes respectively. In such a
case, the regression parameters (Eq. (12)) are equiva-
lent to the parameters obtained by applying a linear dis-
criminant analysis (see Ripley, 1996; Swets and Weng,
1996).

All the computations presented are performed in
the frequency domain. However, it would be in-
teresting to localize in the image itself the spatial
features that contribute to the estimation of each

spatial envelope property s. Equation (8) shows how
the attribute is computed from the energy spectrum.
As the DST( fx , fy) function contains both posi-
tive and negative values, we first separate the DST
into two positive functions: DST = DST+ − DST−,
with DST+( fx , fy) = rect[DST( fx , fy)] and DST− =
rect[−DST( fx , fy)]. rect(x) = x for x > 0 and rect (x)

= 0 for x ≤ 0. From Eq. (8) we obtain:

ŝ =
∫ ∫

A( fx , fy)
2 DST+( fx , fy) d fx d fy

−
∫ ∫

A( fx , fy)
2 DST−( fx , fy) d fx d fy

(13)

This equation interprets s as computed by the differ-
ence between the output energies of two filters with
transfer functions: |H+( fx , fy)|2 = DST+( fx , fy) and
|H−( fx , fy)|2 = DST−( fx , fy). Parseval equality ap-
plies for each integral (energy can be computed in the
spatial domain):

ŝ =
∑
x,y

[i(x, y) ∗ h+(x, y)]2

−
∑
x,y

[i(x, y) ∗ h−(x, y)]2 (14)

h+(x, y) and h−(x, y) are the impulse responses of
two filters with the transfer functions: H+( fx , fy) and
H−( fx , fy). i(x, y) is the input image and ∗ is the con-
volution operator. The functions h+ and h− are not
uniquely constrained by the DST as the phase function
can have any value. We fix the phase function at zero
in order to have localized spatial functions. The image
composed by

a(x, y) = [i(x, y) ∗ h+(x, y)]2

−[i(x, y) ∗ h−(x, y)]2 (15)

shows how each spatial location contributes to the at-
tribute s : ŝ = ∑

x,y a(x, y). We refer to a(x, y) as an
opponent energy image. The functions h+(x, y) and
h−(x, y) give the shape of the most discriminant spa-
tial features used for computing s.

In a similar vein, we can derive the contribution of
each spatial location for the estimation of the attri-
bute s using the spectrogram. In this case, we obtain
two spatially variant filters h+

x ′,y′(x, y) and h−
x ′,y′

(x, y) with spatially variant transfer functions |H+
x ′,y′

( fx , fy)|2 = WDST2 + (x ′, y′, fx , fy) and |H−
x ′,y′( fx ,

fy)|2 = WDST−(x ′, y′, fx , fy). The variables (x ′, y′)
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Figure 7. Discriminant spectral templates for the degree of naturalness: a) DST( fx , fy), units are in cycles per pixel, b) h−(x, y), units are
in pixels, c) h+(x, y) and d) WDST(x, y, fx , fy) sampled at 4 × 4 spatial locations. White and dark pixels correspond, respectively, to positive
and negative values.

refer to the spatial locations at which the spectrogram
has been sampled. The opponent energy image is then
computed as:

a(x, y) =
∑

x ′

∑
y′

([ix ′,y′(x, y) ∗ h+
x ′,y′(x, y)]2

− [ix ′,y′(x, y) ∗ h−
x ′,y′(x, y)]2) (16)

with ix ′,y′(x, y) = i(x, y)hr (x − x ′, y − y′). The vari-
ables x ′ and y′ correspond to the spatial locations at
which the spectrogram has been sampled (8 × 8 spatial
locations for the rest of the paper).

To summarize, the definition of the spatial envelope
properties provides a low dimensional representation
(much lower dimensionality than image-based features
such as wavelet descriptors). This method proposes
a reduced number of filters/wavelets relevant for the
scene recognition task. The next sections are devoted
to the computation of the spatial envelope properties.

B. Environmental Scene Database

The database contains about 8100 pictures of environ-
mental scenes so as to cover a large variety of outdoor
places. Images were 256 × 256 pixels in size, in 256
gray levels. They come from the Corel stock photo
library, pictures taken from a digital camera and im-
ages downloaded from the web. The scene database
was composed of about 4000 natural scenes (e.g.,
coast, beach, ocean, island, field, desert, grassland, val-
ley, lake, river, mountains, canyon, cavern, forest, wa-
terfall, garden, etc.), and about 3500 urban environ-
ments (e.g., skyscraper, city center, commercial area,
street, road, highway, house, building, pedestrian cen-
ter, place, parking, etc.). The rest of images (�600)
correspond to ambiguous scenes in terms of degree of
naturalness (e.g., farming scene, village in mountains,
panoramic and aerial city views, etc.).

C. Degree of Naturalness

2000 images of natural and man-made scenes4 were
used for computing the naturalness DST and WDST
according to the learning procedure described Section
V(a). Ambiguous scenes in terms of naturalness (im-
ages with both man-made and natural structures) were
not used in the learning. As the naturalness decision
is almost a binary categorization, the linear discrimi-
nant analysis instead of the regression has been used
for the learning stage. The resulting DST( fx , fy) and
WDST(x, y, fx , fy) are presented in Fig. 7(a) and (d).
The DST( fx , fy) shows how the spectral components
of each scene energy spectrum should be weighted in
order to discriminate whether the image is a natural or a
man-made environment. As shown in Section IV, man-
made scenes exhibit a higher proportion of H and V
orientations (see Fig. 5(a)–(d)). The dark negative parts
show that this predominance arises mostly at medium
and high spatial frequencies. The white parts are asso-
ciated with a high degree of naturalness and represent
low spatial vertical contours and diagonals at almost all
the spatial scales. Figure 7 also shows the two filters
h−(x, y) and h+(x, y) that are the spatial equivalents
to the naturalness DST. h−(x, y) cancels oblique ori-
entations and enhances cross junctions aligned with the
horizontal and vertical directions of man-made scenes.
h+(x, y) is matched to oblique orientations and cancels
horizontal and vertical edges.5

To test the validity of the templates, about 5000
scenes not used in the learning stage were projected
onto the DST( fx , fy) and the WDST(x, y, fx , fy). On
average, 93.5% of man-made scenes and natural land-
scapes were correctly classified, for both procedures
(see a sample of misclassified scenes, Fig. 8). Perfor-
mances do not differ when using a Bayesian classifier
(mixture of gaussians, e.g., Ripley, 1996). To illustrate
the classification performances, Fig. 9 shows a sample
of scenes selected at random, and then projected onto
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Figure 8. Samples of scenes (top) not correctly classified with the DST, and their opponent energy image (bottom). Errors of man-made scenes
mostly include textured scenes. Errors of natural landscapes mostly include forests with vertical trees and some open landscapes having straight
lines.

Figure 9. From top to bottom: Samples of images selected at random ordered along the naturalness axis, from man-made environments (left) to
natural landscapes (right); their energy spectra multiplied by the DST; the opponent energy image (we have suppressed the effect of the Hanning
window for clarity). Natural and man-made components are respectively represented by white and black edges.

the DST (very similar organizations are observed when
using the WDST instead). The middle line of Fig. 9
shows the product A( fx , fy)

2 DST( fx , fy), that illus-
trates how the energy spectrum is weighted for each
image. The bottom line of Fig. 9 shows the functions
a(x, y), or opponent energy images. The organization
of images along the naturalness axis evolves accord-
ing to what the discriminant analysis has considered as
relevant for separating at best the two groups. The spec-
tral evolution goes from scenes with the lower degree
of naturalness (e.g., scenes with a straight horizontal
energy spectrum form followed by cross-like energy
spectrum forms), to scenes with the higher degree of

naturalness (e.g., scenes with a vertical energy spec-
trum followed by isotropic energy spectrum forms).
The naturalness DST and WDST represent to which
degree a scene picture is closed to a natural (vs. man-
made) environment. This representation does not mean
that a skyscraper view is a better exemplar of the man-
made category than a city center view but that the prob-
ability that a vertically structured scene represents a
man-made scene is higher than a scene with horizontal
contours or isotropic components.

Results of classification show how powerful the
global energy spectrum (DST) may be for resolv-
ing the man-made vs. natural distinction. In fact, the
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introduction of spatial information does not seem to
improve the classification. Figure 7(d) shows that the
resulting WDST does not vary with respect to the spa-
tial location. As natural and man-made environmental
categories cover (almost) all the possible spatial ar-
rangements of their main components, the second order
statistics are stationary. Therefore, the resulting WDST
is also stationary. The naturalness WDST is simply a
replication of the shape of the global naturalness DST at
each location. But, as detailed hereafter, the stationary
property of the WDST varies with the spatial envelope
attribute estimated.

As explained in Sections III and IV, as the spectral
components correlated with the spatial envelope prop-
erties differ between natural and man-made environ-
ments, we computed the other spatial envelope proper-
ties independently for each type of environment.

D. Computation of the Spatial Envelope Properties
of Natural Scenes

As openness, ruggedness and roughness properties are
continuous dimensions, we used the linear regression
procedure for the learning stage.6 More precisely, 500

Figure 10. Discriminant spectral templates DST( fx , fy), computed with NG = 16, and the equivalent spatial feature detectors h−(x, y) and
h+(x, y) for each property of the spatial envelope. Degree of openness for natural (a) and man-made scenes. (b) Degree of ruggedness for natural
scenes (c). Degree of expansion for man-made scenes (d). Degree of roughness for natural (e) and man-made scenes (f).

natural scenes were randomly selected among the 4000
natural scenes and then organized along the three di-
mensions as follows. For the openness property, we
arranged scenes from widely open environments (e.g.,
coastlines, open landscapes) to enclosed environments
(e.g., mostly forests), with other semi-open landscapes
(fields, valleys, mountains, etc.) ordered between these
two extremes. For estimating the ruggedness property,
the scenes were arranged from natural scenes with long
diagonals (mountains, valleys, peaks, etc.) to scenes
complementary in terms of orientations: open scenes
(e.g., coast, beach, field), vertical scenes (e.g., for-
est, falls) and scenes with isotropic texture (forest and
textured landscapes). The roughness property corre-
sponds to the global level of granularity of the scene
surface that is correlated with the size of the elements or
texture. We chose closed textured scenes for computing
more accurately this dimension. Pictures were ordered
from textured scenes made with small elements (mostly
forests and fields) to coarse textured scenes (e.g., wa-
terfalls, streams, rocks). The resulting DST and WDST
are respectively shown in Figs. 10 and 11. The eval-
uation of each spectral template was assessed along
two criteria: classification performances and ordering
performances.
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Figure 11. Discriminant spectral templates WDST(x, y, fx , fy) with NL = 30. For natural scenes: a) openness, b) ruggedness and c) roughness.
For man-made scenes: d) openness, e) expansion and f) roughness.

The first criterion concerned the classification of
natural scenes not used for the learning stage. These
scenes were previously classified in one of the two
exclusive groups per spatial envelope property (e.g.,
open vs. closed, fine vs. coarse texture). The openness
DST (see Fig. 10(a)) clearly opposes vertical spec-
tral components to other orientations. When project-
ing new open vs. closed scenes, accuracy was about
93%. In Fig. 10(a), we can see that the first filter (h−)
matches the existence of a horizon line in the scene
and the second filter (h+) corresponds to diagonals and
isotropic distributions of orientations at medium and
high spatial frequencies. The WDST (see Fig. 11(a))
shows how the spectral components of each scene en-
ergy spectrum should be locally weighted in order to
organize scenes according to the openness property. As
expected, the openness WDST clearly shows a differ-
ent weighting at different spatial locations: the horizon-
tal (dark vertical component) edges located around the
center of the viewed scene are correlated with openness
of the space (horizon line). By contrast, isotropic tex-
ture (white components) at the top of the scene indicates
an enclosed space (forest, mountains). Categorization
performances with the WDST were better (96.5%).

The ruggedness DST is displayed in Fig. 10(d). Ba-
sically, the DST opposes long diagonals to vertical and
horizontal components at all the spatial frequencies.
As shown by the WDST (Fig. 11(b)), the spatial ar-
rangement of the spectral components seems to play a
relevant role. Diagonal edges around the middle and top
of the scene are correlated with a rugged environment
(mountainous landscape). However, high spatial fre-
quencies in the top and middle part and vertical edges
are correlated with a flat ground level (e.g., forests and
open environments). When projecting scenes (see ex-
amples in Fig. 12(b)) previously classified as having a
high vs. low degree of ruggedness, accuracy was 89%
with the DST and 91% with the WDST.

The roughness DST (Fig. 10(e)) is concerned with
different slopes in the energy spectra. Scenes with a
fine texture would match the dark zone of the DST,
corresponding to high spatial frequencies (low slope
value, α ∼ 1.8). Coarse textured scenes (high slope
value, α ∼ 2.5) would match the low spatial frequen-
cies (in white). The correct classification of new scenes
belonging to fine vs. coarse textured scenes (see exam-
ples in Fig. 12(c)) was 92% with the DST and 94%
with the WDST (Fig. 11(c)). Interestingly, the WDST
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Figure 12. Samples of natural images selected at random and ordered with respect to their the degree of openness, degree of ruggedness,
and degree of roughness. Each figure shows also the product DST( fx , fy)A2( fx , fy) and the opponent energy images a(x, y) revealing the
contribution of each spectral and spatial component to the computation of each attribute.
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is stationary, weighting all the local spectral compo-
nents in a similar way.

The second criterion we used for estimating the rel-
evance of the template procedure concerned the orga-
nization of images along each spatial envelope dimen-
sion. If the templates are estimating the right weighting
of the spectral features, scenes should be meaningfully
arranged along an axis, according to the values of the
estimated attribute of the spatial envelope. The order-
ing performed by each template was compared to hu-
man ordering. We asked four observers to perform 20
orderings, of 12 images each, for each of the three spa-
tial envelope properties. Namely, subjects were told to
begin the ordering by selecting the two pictures that
were the most different according to one spatial enve-
lope attribute and then to process by closed similarities
from the two extreme. Orderings were compared by
measuring the Spearman rank correlation:

Sr = 1 − 6

∑n
i=1(r xi − r yi )

2

n(n2 − 1)
(17)

with n = 12. r xi and r yi are respectively the rank
positions of the image i given by the algorithm and
by one subject. A complete agreement corresponds to
Sr = 1. When both orderings are independent, Sr = 0.
A negative value of Sr means that the ordering has
been inverted. We also computed the Agreement value
that corresponds to the mean Spearman rank correla-
tion between orderings given by the different subjects.
Agreement evaluates the difficulty of the ordering task
and the concordance of the criteria used by the subjects.
Results of Table 2 show high correlations for the three
spatial envelope properties. The average correlation be-
tween the DST (unlocalized spectral components) and
the subjects is 0.79, and it increases to 0.84 when us-
ing localized spectral components (WDST). Further-
more, the average agreement among subjects is of 0.87,
which indicates that orderings of 12 images performed
by the template procedure or a human observer are very

Table 2. Correlation between orderings of natural
scenes made by observers and the two templates for
each spatial envelope property.

Openness Ruggedness Roughness

DST m = 0.82 0.73 0.82

WDST m = 0.88 0.79 0.86

Agreement 0.92 0.82 0.87

Agreement measures the concordance between subjects.

similar. Examples of scenes ordered by the templates
along the openness, ruggedness and roughness dimen-
sions are shown in Fig. 12. To illustrate the features
(both spectral and spatial) that contribute to the esti-
mation of each spatial envelope attribute, we show the
results obtained with the DST (similar orderings are ob-
served when using the WDST). More specifically, the
middle row pictures in Fig. 12 show the product be-
tween the DST and the energy spectrum indicating the
actual contribution of each spectral component to the
estimated attribute. The opponent energy images (bot-
tom part of Fig. 12) illustrate how the different spatial
features of an image have been weighted.

E. Computation of the Spatial Envelope
of Urban Landscapes

500 natural scenes were randomly selected from the
3500 man-made scenes and then organized along each
spatial envelope property. For the openness property,
urban environments were arranged from horizontally
structured scenes (e.g. open roads, highways) to closed
city views (e.g. streets, centers) and then vertically
structured scenes (tall buildings, skyscrapers). For
computing the degree of expansion, images were ar-
ranged from scenes with a perspective view (roads,
some highways, streets) to “flat” scenes (e.g. views
in front of buildings, shops, houses, at different dis-
tances). To build the Roughness template, the images
were organized from “textured” urban scenes, very de-
tailed, such as busy pedestrian scenes, some buildings
with fine and small contours, to urban close-up views
exhibiting larger surfaces (see exemplars in Fig. 13(c)).
The templates were computed with the linear regres-
sion analysis.

The openness DST displayed in Fig. 10(b) has a
very simple structure: vertical spectral components (in
black) correspond to open scenes, as opposed to hor-
izontal spectral components (in white) corresponding
to vertical contours in the image correlated with an en-
closed space. According to the shape of the DST, cross
form energy spectra match both dark and white compo-
nents. As a result, the corresponding scenes are located
around the center of the axis (see Fig. 13(a)) between
truly horizontal scenes and vertically structured scenes.
Classification rate after projecting hundreds of open
vs. closed and vertical scenes not used for the learning
stage, was 94% with the DST and 96% with the WDST.
Figure 11(d) shows the openness WDST for man-
made scenes. The WDST reveals the non-stationary
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Figure 13. Samples of man-made scene pictures selected at random and ordered with respect to their the degree of openness, degree of
expansion, and degree of roughness.
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Figure 14. Pictures organized according to the expansion axis. The expansion attribute is estimated by means of the energy spectrum with the
DST (left), or by the spectrogram with the WDST (right).

spatial distribution of horizontal and vertical structures
in open (Fig. 6(a)) and closed (Fig. 6(b)) man-made
environments.

The DST corresponding to the degree of expan-
sion differentiates between diagonal spectral compo-
nents (in black), corresponding to vanishing lines in
the scene, and vertical spectral components and low fre-
quency horizontal components (see Fig. 10(d)). Clas-
sification rate of perspective views vs. flat scenes was
90% with the DST (Fig. 10(d)) and 94% with the
WDST (Fig. 11(e)). To illustrate the spectral evolu-
tion along this axis, we projected a random set of city
center scenes (Fig. 13(b)). They were ordered by the
DST from scenes with a long perspective (street) to
flat views over buildings or houses. Although the local
shape of the WDST corresponds roughly to the global
DST, diagonal spectral components correlated with a
perspective view are not locally symmetrical. Figure 14
illustrates the importance of encoding the spatial con-
figuration of structures. The figure shows three urban
scenes organized according to the expansion attribute
estimated by both the DST (Fig. 14.left) and the WDST
(Fig. 14.right). The DST procedure, which only con-
siders the dominant orientations regardless of location,
produced one permutation in the organization due to
the abundance of oblique orientations in the left-hand
image (the front view of a building). It assigned to that
image a high degree of expansion whereas the global

pattern of orientations is not in agreement with a strong
perspective view. By contrast, the WDST captured the
spatial information correlated with the expansion prop-
erty and considers the building view as less expanded
than the sidewalk, but more than the door.

Finally, the roughness DST (see Fig. 10(f)) shows
that the two groups differ mainly in their spectral
slope along the cardinal orientations. Interestingly, the
WDST (Fig. 11(f)) looks similar at each location in the
image, independently of the height in the scene (such
as the roughness WDST computed for natural scenes).
Figure 13(c) illustrates an ordering performed by the
roughness DST. Classification rate of new scenes was
91% with the DST and 92% with the WDST. Finally,
the correlations between the different templates and
human observers are shown in Table 3. The procedure
was identical to the natural scenes group procedure.
The mean correlation between observers and the DST

Table 3. Correlation between orderings of urban scenes
made by observers and the two templates for each spatial
envelope property.

Openness Expansion Roughness

Energy spectrum m = 0.87 0.77 0.83

Spectrogram m = 0.90 0.88 0.85

Agreement 0.92 0.91 0.88

Agreement measures the concordance between subjects.
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Figure 15. Organization of natural scenes according to the openness and ruggedness properties estimated by the WDSTs.

ranking was 0.82. When using the WDST the rank cor-
relation was 0.87 that was close to the agreement among
observers (0.90).

VI. Experimental Results

Each spatial envelope property corresponds to the axes
of a multidimensional space into which scenes with

similar spatial envelopes are projected closed together.
Figures 15 and 16 show a random set of pictures of
natural and man-made environments respectively pro-
jected in a two dimensional space corresponding to the
openness and ruggedness (or expansion for man-made
environments) dimensions. Therefore, scenes closed
in the space should have the same (or very similar)
membership category, whether the spatial envelope
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Figure 16. Organization of man-made environments according to the degrees of openness and expansion (WDST).

representation is meaningful enough to provide the se-
mantic category of the scene. We tested this hypothesis
as follows: 400 target images out of the image database
were chosen at random with their first 7 neighbors. Four
subjects were asked to select among the seven neigh-
bors, the scenes that belonged to the same semantic
category. For each spatial envelope attribute, similar-
ity between the target scene and each neighbor was
approximated by the Euclidean distance between the

three attributes (openness, ruggedness/expansion and
roughness) of the two images i and j :

D2(i, j) = (
si

open − s j
open

)2 + (
si

rugg/exp − s j
rugg/exp

)2

+ (
si

rough − s j
rough

)2
(18)

The attributes were normalized in order to have null
mean and a standard deviation of 1.
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Figure 17. Examples of man-made scenes (target) with four neighbors sharing similar spatial envelope, estimated with the DST and the WDST
procedures. The bottom example is an error.

Scenes were considered as correctly recognized
when subjects selected at least 4 neighbors as hav-
ing the same category membership. Figures 17 and
18 show examples of several target scenes with their
nearest neighbors (examples of errors are shown at the

bottom of both figures). Results of average correct cat-
egorization, summarized in Fig. 19, show that, on av-
erage among natural and urban landscapes, 92% of
the scenes were accurately classified with the WDST
and 86% when using the DST. These results highlight
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Figure 18. Examples of natural scenes with four neighbors sharing similar spatial envelope, estimated with the DST and the WDST procedures.

the important role played by the unlocalized spectral
components (DST) for representing the spatial en-
velope properties. The addition of spatial layout in-
formation clearly increases performance, but most of
this performance level may be attributable to the
global distribution of the relevant spectral features.

In fact, performance differences between the DST
and the WDST procedure mostly lie in the quality
of the spatial envelope neighborhood. In Figs. 17
and 18, we can see that while both DST and WDST
models organize together scenes belonging to the
same category, the WDST model provides neighbor
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Figure 19. Performances of correct categorization, averaged
among subjects, using 200 scenes per group. For a purpose of com-
parison, it is also shown results of categorization on the same pictures
when using the openness DST alone, and the openness with the ex-
panded (or ruggedness) DSTs.

images that are more visually similar to the target
scene.

The local similarities between neighbor scenes
should be reflected at a global level in the organiza-
tion of scenes into semantic zones. In Figs. 15 and 16,
we can identify a few semantic zones, albeit the or-
ganization of pictures is clearly continuous from one
border of the space to another. In order to verify the
emergence of semantic groups, we projected typical
exemplars of coasts, countryside scenes (as fields, open
landscapes), forests, mountains, for the natural space,
and highways, tall buildings/skyscrapers, streets and
close-up city center views for the urban space. Specif-
ically, four observers were asked to choose among the
database examples corresponding to these eight cate-
gories with the constraint that all the exemplars from
a category should also represent visually similar en-
vironments. We only kept for the test, the scenes for
which three observers agree.

Classification was performed by a K nearest neigh-
bors classifier (K-NN). The K-NN uses a database
of labeled scenes with the corresponding category

Figure 20. Examples of misclassify scenes using the WDST representation: a) a coast classified as a countryside, b) a field and c) a mountain
classified as forests, d) an highway matched with streets, e) a close view classified with tall buildings and f) a tall building classified with close-up
views.

Table 4. Confusion matrix (in percent) between typi-
cal scenes of coasts, countryside (fields, valleys, hills,
rolling countryside), enclosed forests and mountains
(N = 1500).

Coast Country Forest Mountain

Coast 88.6 8.9 1.2 1.3

Country 9.8 85.2 3.7 1.3

Forest 0.4 3.6 91.5 4.5

Mountain 0.4 4.6 3.8 91.2

Table 5. Confusion matrix (in percent) for the classification be-
tween highways, city center streets, city center close views, and
tall buildings/skyscrapers (N = 1400 images).

Highway Street Close-up Tall building

Highway 91.6 4.8 2.7 0.9

Street 4.7 89.6 1.8 3.9

Close-up 2.5 2.3 87.8 7.4

Tall building 0.1 3.4 8.5 88

(training set) in order to classify new unlabeled pic-
tures: given a new scene picture, the K-NN first looks
for the K nearest neighbors of the new image within
the training database. The K neighbors correspond
to the K scene pictures from the training database with
the smallest distance to the unlabeled picture using the
spatial envelope properties (Eq. (18)). Then, it assigns
to the new picture the label of the category the most
represented within the K nearest neighbors. Perfor-
mances of classification using the K-NN are presented
in Tables 4 and 5 (see Fig. 20 for a sample of mis-
classified scenes). Classification accuracy was on av-
erage 89% with the WDST (and 86% when using the
DST procedure). Figure 21 illustrates how the attributes
of the spatial envelope differentiate the eight scene
categories.

The advantage of representing a scene picture with
the spatial envelope attributes is the possibility to
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Figure 21. Distribution of man-made (a, b and c) and natural (d, e and f) scene categories along the three attributes of the spatial envelope. Man-
made categories: H = highways, S = streets, C = close-up views and T = tall buildings. For natural categories: Coa = Coasts, C = countryside,
F = forests and M = mountainous landscapes.

Figure 22. Examples of description of the spatial envelope of urban scenes.

generate a meaningful description of the space that the
scene represents. Figure 22 illustrates several examples
of descriptions of urban environments, automatically
generated. Along the openness dimension, a man-made
urban space may be labeled as open, semi-open, closed
or vertically structured. Along the two other dimen-
sions, an urban scene can represent a flat vs. expanded
view, and a small vs. large space. The centers of the ex-
panded and roughness axes correspond to ambiguous
regions, where the system may decide to not attribute
a description (Fig. 21).

To summarize, the performances of the two spatial
envelope models (based on the DST or the WDST) cor-
roborate the hypothesis that modeling a few structural
and spatial properties of natural and urban environmen-
tal scenes provide enough information to represent their
probable semantic category. The use of holistic scene
representations (based on the energy spectrum or the
spectrogram) provides a simple procedure for model-
ing the scene structure that is correlated with seman-
tic aspects. The whole procedure can be summarized
in four steps: A) prefiltering of the scene picture, B)
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Figure 23. Indoor vs. outdoor DST a) computed on the entire database, and b) computed only with man-made scenes. Dark components
correspond to indoor components. C) WDST considering only man-made scenes.

computation of the spectrogram of the filtered image
(Eq. (2)), C) classification of the environment into man-
made or natural and D) estimation of the three other cor-
responding spatial envelope attributes with the WDSTs
(Eq. (10)). Therefore, these attributes can be used for
computing similarities between environmental scenes
(Eq. (18)), for generating a meaningful description of
the space of the scene or for inferring the probable
scene category.

VII. Related Developments

A. Indoor vs. Outdoor Classification

Another important issue in scene semantic classifica-
tion is the distinction between outdoor and indoor im-
ages. Separation between these two classes using a
global DST (see Fig. 23(a), when considering about
1300 images per group) yields a classification rate of
82%. In fact, the DST is doing a separation similar
to the natural vs. man-made scenes separation, as all

Figure 24. Man-made scenes sorted according to the matching with the WDST for discriminating indoor and outdoor scenes. The decision
threshold corresponds to the center. In this example there are two misclassified images.

natural scenes are outdoor images. When dealing with
only man-made environments, classification accuracy
decreases to 75%. Figure 23(b) shows that the result-
ing DST looks very similar to the roughness DST. The
DST differentiates between indoor scenes that usually
contain large objects with flat surfaces and outdoor
scenes usually more textured and made of small el-
ements. Using more complex classifiers, as K-NN or
Bayesian classifiers (mixture of gaussians), does not
provide better results than those obtained by the linear
discriminant analysis (DST). These poor results show
that global structural features (energy spectrum) are not
sufficient to provide reliable performances. In fact, in-
door and outdoor environments share similar spectral
signatures: they are both made with square-like build-
ing blocks based on variations along vertical and hori-
zontal dimensions. Indoor scenes usually have a lower
degree of expansion and roughness (the mean slope is
about α ∼ 2.5 for indoors and α ∼ 2.2 for man-made
outdoors), but these characteristics may also be found
in some outdoor environments (e.g. front views on a
building and outdoors close-up views).
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The spatial information introduced by the spectro-
gram improves the discrimination. Figure 24 shows a
selection of man-made scenes sorted according to the
indoor-outdoor WDST (see Fig. 23(c), the WDST was
computing with the linear discriminant analysis). The
template indicates that indoor scenes are characterized
by low spatial frequencies at the bottom of the scene
(mainly due to large surfaces), by vertical structures
(wall edges, tall furniture, etc.) in the central-top part,
and by horizontal structures at the top (e.g. ceiling).
Outdoor scenes are mainly characterized by high spa-
tial frequencies everywhere. The WDST procedure
gives a 79% of correct classification when considering
only man-made structures. When using the decompo-
sition coefficients of the spectrogram, a K-NN classi-
fier (K = 19 and NL = 40) provides better results than
the WDST procedure (classification accuracy of about
82% when using only man-made scenes, and 85% when
considering the whole database).

In any case, an accuracy below 90% is not consid-
ered as satisfactory as the indoor vs. outdoor separation
is an exclusive choice that does not have any ambigu-
ity for human observers. Current studies devoted to the
indoor vs. outdoor classification issue (Szummer and
Picard, 1998; Vailaya et al., 1999) have obtained simi-
lar results when computing global and local structural
attributes (between 80% and 85%). They have already
shown that the addition of color cues greatly improve
performances over 90%.

B. Depth Perception

Representation of depth in a real world environment
is an essential attribute of its semantic representation.
When the only information available is the 2D image,
the 3D structure of the scene can be partially recov-
ered with algorithms such as shape from shading, from
textures, from edges, etc. The spatial envelope may be
considered as a simple indicator for the global depth
of an environmental scene and may be used as a pri-
mary stage for object detection algorithms (Torralba
Sinha, 2001). Global depth refers to a global measure-
ment of the mean distance between the observer and
the background and main structures inside the scene.
Within one set of pictures sharing the same spatial en-
velope, we observe similar global depths (see Figs.
18 and 17). Scene organizations achieved by the at-
tributes proposed in this paper appear to be correlated
with organizations based on global depth (Figs. 12
and 13).

C. Environmental Scenes vs. Object Discrimination

This paper focuses on the definition of meaning-
ful attributes for differentiating among environmental
scenes. However, in a real setting, many of the views
that a system has to deal with when interacting with its
environment will correspond to close-up views of ob-
jects and structures (tools, faces, furniture, etc.). There-
fore, a remaining question to explore is whether there
exist structural and configuration differences between
environmental scenes (indoor and outdoor) and object
views that would allow their discrimination. Most man-
made object views contain sharp edges and flat sur-
faces, without a statistical bias with respect to dom-
inant orientations due to the variety in object shapes
and the variations of point of views. On the contrary,
scenes have few sharp edges and flat surfaces with a
strong bias towards the horizontal and vertical orienta-
tions. They also have more restrictions in their point of
view due to the scale of the space larger than human
size. However, as these tendencies are not shared by
all the members of the group and environmental scene
group, the energy spectrum (DST) provides only a 72%
of correct classification.

With respect to the spatial configurations, there are
relatively few constraints on object shapes and their
spatial arrangements. Given an environmental scene,
there are many object arrangements that produce a sim-
ilar configuration of the spectral features in the image.
However, most environmental scenes have strong con-
figuration rules that are rarely found in non-accidental
object arrangements (for example, the layout of diver-
gent lines of a perspective view of a street). The spec-
trogram features, using a WDST (Fig. 25), provide a
82% of correct discrimination between man-made ob-
jects and environmental scenes (with 622 pictures for
each group). The WDST mainly reveals the discrimi-
nant layout between objects and scenes: it assigns to
the scenes the configuration of spectral components
in agreement with an expanded space (concave space
with perspective lines going away from the observer).
On the contrary, the spectral components assigned to
objects (see an illustration in the opponent energy im-
age of Fig. 26) correspond more to convex structures.
Perspective lines coming towards the observer, that are
common to many object views, are rarely found in typi-
cal views of environmental scenes. The discrimination
result of 82% shows that there are significant struc-
tural and configurational differences between objects
and environmental scenes that can be captured by a
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Figure 25. WDST (NL = 20) for classification of man-made environmental scenes and objects. Dark components correspond to close-up
views of objects.

Figure 26. A sample of pictures sorted according to the matching with the object-scene WDST, and their respective opponent energy image.
The decision threshold corresponds to the center.
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holistic image representation. We should also empha-
size that this discrimination task is not as exclusive
as the indoor/outdoor discrimination (e.g. human ob-
servers usually assign an image representing a house
to the “object” group).

VIII. Conclusion

This paper introduces a representation of the structure
of real world scenes that we termed Spatial Envelope.
The spatial envelope of an environmental scene may
be described as a set of perceptual properties (natural-
ness, openness, roughness, ruggedness and expansion).
These properties are related to the shape of the space
and are meaningful to human observers. The spatial en-
velope properties provide a holistic description of the
scene where local object information is not taken into
account.

We show that these spatial properties are strongly
correlated with the second-order statistics (DST) and
with the spatial arrangement of structures in the scene
(WDST). The spatial envelope model organizes scene
pictures as human subjects do, and is able to retrieve im-
ages that share the same semantic category. The perfor-
mance of this holistic model corroborates the assump-
tion that object information is not a necessary stage for
achieving the scene identity level. Therein, spatial en-
velope attributes may be used for computing similar-
ities between environmental scenes, for generating a
meaningful description of the space that the scene sub-
tends, or for inferring the scene category. It provides
a meaningful representation of complex environmen-
tal scenes that may sketch a direct interface between
visual perception and semantic knowledge. The holis-
tic scene representation provides an efficient way for
context modeling that can be used as the first stage of
object detection algorithms by priming typical objects,
scales and locations (Torralba and Sinha, 2001).

Appendix I: Principal Components of the Energy
Spectrum and Spectrogram

For images of size N 2 pixels, the function energy spec-
trum, A( fx , fy)

2, obtained from the Discrete Fourier
Transform can be sampled giving N 2 values. Simi-
larly, the spectrogram, A(x, y, fx , fy)

2, computed at
8 × 8 spatial locations will give 64N 2 samples. The
goal of PCA is to transform the original set of vari-
ables in a reduced number of uncorrelated variables that

preserve the maximal variation of the original data (e.g.
Moghaddam and Pentland, 97). In order to compute
the principal components, we rearrange the samples
of the energy spectrum (or spectrogram) in a column
vector p. The KL basis for both representations are
obtained as the eigenvectors of the covariance matrix
E[(p − p̄) (p − p̄)T ], with p̄ = E[p]. The expecta-
tions are computed from averaging across a large im-
age database. Finally, the PCA extracts the subspace
spanned by a subset of KL functions with the largest
eigenvalues. In practice, the number of training images
is Ni < N 2 and, therefore, the KL basis cannot be esti-
mated reliably. A way to reduce the dimensionality of
the vector p is to reduce the number of samples of the
function A( fx , fy), or A(x, y, fx , fy). We propose to
sample the function A( fx , fy) as:

gi =
∫ ∫

A( fx , fy)
2 Gi ( fx , fy) d fx d fy (19)

Gi are a set of Gaussian functions arranged in a
log-polar array and calculated by rotating and scal-
ing the function: G( fx , fy) = e− f 2

y /σ 2
y (e−( fx − fo)

2/σ 2
x +

e( fx + fo)
2/σ 2

x ). In this paper we use a set of Gaussians dis-
tributed in 5 frequency bands with central frequencies
fo at 0.02, 0.04, 0.08, 0.16 and 0.32 c/p, and 12 orien-
tations at each band (other configurations yield similar
results). The function A( fx , fy)

2 is then represented
by a vector g = {gi }i=1,L with dimensionality L < Ni .
The same spectral sampling can be applied locally to
the spectrogram providing a vector g with 64L sam-
ples when considering 8 × 8 different spatial locations.
The log-polar sampling corresponds to a change of co-
ordinates of the spectrum from Cartesian coordinates
( fx , fy) to polar coordinates ( f, θ ). This transformation
provides the same detail of description at each spatial
scale in agreement with the property of scale invari-
ance of the second order statistics of real world images
(e.g. Field, 1987). In our experiments, we have noticed
that the log-polar transformation reduces the number
of principal components needed for the discrimination
of scene categories compared to the original Cartesian
coordinates. PCA is then applied to the low dimen-
sional vector g. We compose a new vector v = Cg with
decorrelated components by solving the matrix equa-
tion: E[v vT ] = CE[(g − ḡ) (g − ḡ)T ]CT = �, being
� a diagonal matrix. The matrix C = {ci, j } contains
the eigenvectors of the covariance matrix and the di-
agonal matrix � contains the associated eigenvalues
sorted in decreasing order. We select only the NG first
components of the vector v = {vi }i=1,L . When the
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vector g is obtained from the global energy spectrum,
the components vi are then computed as:

vi =
L∑

j=1

ci, j g j=
∫ ∫

A( fx , fy)
2 ψi ( fx , fy) d fx d fy

(20)

with:

ψi ( fx , fy) =
L∑

j=1

ci, j G j ( fx , fy) i = 1, NG (21)

The features vi are decorrelated. The functions
ψi ( fx , fy) are the approximations of the NG princi-
pal KL functions. A similar derivation applies when
the vector g is obtained from the spectrogram.
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Notes

1. The “gist” is an abstract representation of the scene that spon-
taneously activates memory representations of scene categories
(a city, a mountain, etc.) (see Friedman, 1979).

2. Looking for a more precise nomenclature describing the openness
of a scene, we found early suggestions given by Gibson (1976),
who defines an open environment as the “layout consisting of
the surface of the earth alone” (1986, p. 33). Then, surfaces of
the ground are usually more or less “wrinkled by convexities and
concavities”.

3. We apply a pre-filtering to the input image i(x, y) that reduces
illumination effects and prevents some local image regions to
dominate the energy spectrum. The prefiltering consists in a local
normalization of the intensity variance:

i ′(x, y) = i(x, y) ∗ h(x, y)

ε +
√

[i(x, y) ∗ h(x, y)]2 ∗ g(x, y)

g(x, y) is an isotropic low-pass gaussian spatial filter with a
radial cut-off frequency at 0.015 cycles/pixel, and h(x, y) =
1 − g(x, y). The numerator is a high-pass filter that cancels the
mean intensity value of the image and whitens the energy spec-
trum at the very low spatial frequencies. The denominator acts
as a local estimator of the variance of the output of the high-pass
filter. ε is a constant that avoids noise enhancement in constant
image regions. We set experimentally ε = 20 for input images
with intensity values in the range [0, 255]. This pre-filtering stage
affects only the very low spatial frequencies (below 0.015 c/p)
and does not change the mean spectral signature.

4. The naturalness DST coefficients do not vary, neither perfor-
mances of categorization, when more images are used for the
learning stage.

5. Note that in this representation of the two filters, high spatial fre-
quencies hide the contribution of low spatial frequencies, which
is not the case when looking at the DST in the spectral domain.

6. The same templates may be computed using the linear discrim-
inant analysis (see Torralba and Oliva, 1999) with two scene
groups that are exclusive along each property. By doing so, we
have obtained templates similar to those shows in Figs. 10 and
11, and similar performances in classification and ordering.
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